
C O M P U T E R S C I E N C E R E V I E W ( ) –

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/cosrev

Survey

Linear Temporal Logic Symbolic Model Checking

Kristin Y. Rozier

NASA Ames Research Center, Moffett Field, CA 94035, USA

A R T I C L E I N F O

Article history:

Received 11 February 2010

Received in revised form

26 June 2010

Accepted 29 June 2010

Keywords:

Linear Temporal Logic (LTL)

Symbolic Model Checking (SMC)

Verification

Formal Methods

A B S T R A C T

We are seeing an increased push in the use of formal verification techniques in safety-

critical software and hardware in practice. Formal verification has been successfully used

to verify systems such as air traffic control, airplane separation assurance, autopilot,

CPU designs, life-support systems, medical equipment (such as devices which administer

radiation), and many other systems which ensure human safety. This survey provides a

perspective on the formal verification technique of linear temporal logic (LTL) symbolic

model checking, from its history and evolution leading up to the state-of-the-art. We unify

research from 1977 to 2009, providing a complete end-to-end analysis embracing a users’

perspective by applying each step to a real-life aerospace example. We include an in-depth

examination of the algorithms underlying the symbolic model-checking procedure, show

proofs of important theorems, and point to directions of ongoing research. The primary

focus is on model checking using LTL specifications, though other approaches are briefly

discussed and compared to using LTL.

Published by Elsevier Inc.

1. Introduction

Verification of a software or hardware system involves
checking whether the system in question behaves as it
was designed to behave. Design Validation involves checking
whether a system design satisfies the system requirements.
(If it does not, it is desirable to find out early in the design
process!) Both of these tasks, system verification and design
validation, can be accomplished thoroughly and reliably
using formal methods, such as model checking. Model checking
is the formal process through which a desired behavioral
property (the specification) is verified to hold for a given
system (the model) via an exhaustive enumeration (either
explicit or symbolic) of all of the reachable system states and
the behaviors that cause the system to transition between
them. If the specification is found not to hold in all system
executions, a counterexample is produced, consisting of a trace
of the model from a start state to an error state in which

E-mail address: Kristin.Y.Rozier@nasa.gov.

the specification is violated, providing a very helpful tool for
debugging the system design.

The time-honored techniques of simulation and testing,
both of which involve checking the system’s behavior on a
large set of expected inputs, also address similar questions
and are extremely useful debugging tools in early stages
of system design and verification. However, as a system is
refined, the remaining bugs become fewer and more subtle
and require more time to uncover. A major gap in the
process of using simulation and/or testing for verification
and validation is that there is no way to tell when these
techniques are finished (i.e. when all of the bugs in the system
have been found). In other words, testing and simulation
can be used to demonstrate the presence of bugs but not
the absence of bugs. There is not even an accurate way of
estimating how many bugs remain. Another open question
is that of coverage, of both the possible system inputs and
the system state space. Quite simply, it has been proven
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that testing and simulation cannot be used to guarantee an
ultra-high level of reliability within any realistic period of
time [1]. For some systems, this is an acceptable risk. For
those systems, it is enough to reduce the bug level below
a certain measurable tolerance, for example in terms of
frequency in time. For safety-critical systems, or other systems,
such as financial systems, where reliability is key because
failure is potentially catastrophic, we require an absolute
assurance that the system follows its specification via an
examination of all possible behaviors, including those that
are unexpected or unintended. This assurance is provided by
model checking.

While there are a range of different techniques for
formal verification, model checking is particularly well-suited
for the automated verification of finite-state systems, both
for software and for hardware. Once the system model
and specification have been determined, the performance
of the model checking step is often very fast, frequently
completing within minutes. The counterexample returned
in the case a bug is found provides necessary diagnostic
feedback. Furthermore, iterative refinement and re-checking
of the failed specification can provide a wealth of insight
into the detected faulty system behavior. Model checking
lends itself to integration into industrial design life-
cycles as the learning curve is quite shallow and easily
outweighed by the advantages of early fault detection. The
required levels of user interaction and specialized expertise
needed to effectively utilize a model checker are minimal
compared to other methods of formal verification. Moreover,
partial specifications can be checked, allowing verification
steps to occur intermittently throughout system design.
However, there is a trade-off between the high level of
automation provided by model checking and the high level
of expressiveness and control that may be required for
verification in some cases. For this reason, certain systems
benefit from the use of alternative verification techniques,
such as theorem proving, which involves logically deducing
the specification from the formal system description and a
set of axioms and inference rules. Still, model checking’s high
level of automation makes it a preferable verification method
where applicable since the performance time and quality of
insight obtained from a negative result when using theorem
proving for verification are highly dependent on the particular
skill-set of the person providing the proof.

Formally, the technique of model checking checks that a
system, starting at a start state, models a specification. Let M
be a state-transition graph (i.e. an automaton) representing
the system with set of states S and let s ∈ S be the start
state. Let ϕ be the specification in temporal logic. We check
that M, s |H ϕ. In other words, we check that M satisfies
(“models”) ϕ. This technique of temporal logic model checking
was developed independently by Clarke and Emerson [2] in
the United States and Quielle and Sifakis [3] in France in 1981.
Thus, 1981 is considered the birth year of model checking.

The primary focus of this paper is on model checking
using Linear Temporal Logic (LTL) specifications. LTL was
first introduced as a vehicle for reasoning about concurrent
programs by Pnueli in 1977 [4]. LTL model checkers follow the
automata-theoretic approach [5], in which the complemented
LTL specification ¬ϕ is translated to a Büchi automaton,1

1 Büchi automata are formally defined in Section 3.4.

A¬ϕ, which is a finite automaton on infinite words that
accepts exactly all computations that satisfy the formula ¬ϕ.
A¬ϕ is then composed with the model M under verification,
forming AM, ¬ϕ [6]. Intuitively, any accepting path in AM, ¬ϕ

represents a case where the system M allows a behavior
that violates the specification ϕ. The model checker then
searches for such a trace of the model that is accepted
by the automaton AM, ¬ϕ via a nonemptiness check. If an
accepting trace is found, it is returned as a counterexample.
If no such trace exists (i.e. the language L (AM, ¬ϕ) = ∅), we
have proven that M, s |H ϕ. This process is summarized in
Table 1. The equivalent to the automata-theoretic approach
for branching temporal logics utilizes automata on infinite
trees and relies upon a reduction of satisfiability to the
nonemptiness problem for these automata [7].

LTL model checkers can be classified as explicit or symbolic.
Explicit model checkers, such as SPIN2 [8] and SPOT3 [9],
construct the state-space of the model explicitly and create
the automaton AM, ¬ϕ such that L (AM, ¬ϕ) = L (M)∩ L (A¬ϕ),
and |AM, ¬ϕ| = O(|M| · |A¬ϕ|), where vertical bars indicate
the size of an automaton in terms of number of states
and transitions. Next, the model checker searches for a
trace falsifying the specification. This search equates to a
nonemptiness check of the automaton AM, ¬ϕ. The standard
algorithm for this task is Tarjan’s depth-first search algorithm
for finding strongly connected components in the state-
transition graph, which runs in time linear in the sum of
the number of states and transitions. (In practice slightly
more efficient algorithms are usually implemented [10–12].)
However, constructing and searching the state space in this
manner requires a considerable amount of space, even when
utilizing optimization techniques such as on-the-fly state
space construction [13–15]. Given that the size of the state
space required for model checking is the largest challenge
to its efficacy as a verification technique, utilizing techniques
that conserve space is vital.

The state explosion problem is widely agreed to be the
most formidable challenge facing the application of model
checking to large and complex real-world systems. In
short, the number of states required to model concurrent
systems grows exponentially with the number of system
components, constituting the main practical limitation of
model checking. Sequential hardware circuits with n input
variables and k registers require 2n+k states to represent.
Even simple systems, like an n-bit binary counter, can
necessitate large state spaces (in this case, 2n states). In
general, a system with n variables over a domain of k
possible values requires at least kn states in the model
and reasoning over real-valued variables, which have infinite
possible values, results in a state-transition model with
infinitely many states. Unfortunately, the state explosion
problem is unavoidable in the worst case. However, a host
of techniques have been developed over the last three
decades that have successfully eased the problem for certain
types of systems. For example, sophisticated data structures,
clever algorithms for representing interleaving of concurrent
components (called partial order reduction [16]), and the use
of bisimulation equivalences [17] and compositional (also

2 http://spinroot.com/.
3 http://spot.lip6.fr/.
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Table 1 – Model checking definition.

Model checking

Description Implementation

1. Create a mathematical model of the
system.

1. Define the system model M containing traces over the set Prop of propositions.

2. Encapsulate desired properties in a
formal specification.

2. Let specification ϕ be a formula over the set Prop.

3. Check that the model satisfies the
specification.

3. Check that M |H ϕ:
• Translate the specification ¬ϕ into a Büchi automaton A¬ϕ and compose it with the

system model M to form AM, ¬ϕ.
• Check AM, ¬ϕ for nonemptiness. That is, search for a trace that is accepted by AM, ¬ϕ.

– If such a trace exists, return it as a counterexample.
– If no such trace exists, return TRUE.

called modular) verification [18] to reason about different
levels of abstraction, all address the state explosion problem.

In order to mitigate the state explosion problem, symbolic
model checkers, such as CadenceSMV [19], NuSMV [20], and
VIS [21], represent the system model symbolically using
sets of states and sets of transitions. They then analyze
the state space symbolically using binary decision diagrams
(BDDs) [22]. In contrast with explicit-state model checking,
states in symbolic model checking, are represented implicitly,
as a solution to a logical equation. This saves space in
memory since syntactically small equations can represent
comparatively large sets of states. All symbolic model
checkers essentially use the symbolic translation for LTL
specifications described in [23] and the analysis algorithm
of [24], though some optimize further. The technique of using
BDDs to reason about Boolean formulas representing the state
space, thereby avoiding building the state graph explicitly,
was invented by McMillan [25] and is considered to be one
of the biggest breakthroughs in the history of model checking
for its impact on the state explosion problem [26].4

We carefully consider each step in the end-to-end process
of linear temporal logic symbolic model checking in order,
giving the big picture before the lower-level details of each
step. Therefore, the structure of this paper is as follows.
Section 2 discusses strategies for symbolically modeling a
system for verification and introduces our running example
of verifying an automated air traffic control architecture.
Next, we discuss specifying behavior properties in temporal
logic and translating them into symbolic automata in
Section 3. We demonstrate how to represent the combined
system model and specification using BDDs in Section 4 and
then show how to perform the nonemptiness check and
produce counterexample traces in Section 5. To facilitate ease
of understanding, formal definitions of each construct are
given upon first use, rather than upon first mention. For
example, while we mention LTL in the title of this paper,
it is not defined until Section 3.1.1, where we first discuss
the process of writing temporal logic specifications in detail.
Finally, we conclude with a discussion in Section 6.

4 Others independently published ideas similar to McMillan’s
symbolic model-checking algorithm at around the same time.
See [27] for a high-level overview of these techniques.

2. Modeling the system

While it is sometimes possible to perform verification directly
on a completed system, this approach is undesirable for
two reasons. Firstly, it is significantly more efficient and
cost-effective to perform verification as early as possible in
the system design process, thereby avoiding the possible
discovery of an error in the completed system that requires
a redesign. Secondly, it is simpler and easier to reason about
a model of the system than the system itself because the
model includes only the relevant features of the larger system
and because the model is easier to build and redesign as
necessary.

Surveying the vast array of system modeling techniques
is outside the scope of this paper. Models can be
extracted from automata, code, scripts or other higher-
level specification language descriptions, sets of Boolean
formulas, or other mathematical descriptions. They can be
comprised of sets of models, such as a set of models
of the whole system at different levels of detail, or a
set of models of different independent subsystems plus a
model of the communications protocol between subsystems,
etc. Furthermore, there are many strategies for modeling
to optimize clarity, provide generality for reusability, or
minimize model checking time, either by reducing time or
space complexity during the model checking step. Models
can be designed not only to find bugs in a system design
but also to solve problems from other domains. For example,
model checking is sometimes used for path planning
where the model and the specification property describe
the environment to be traversed and the constraints on
the path; the counterexample returned constitutes a viable
path matching those criteria [28]. Here we simply list the
necessary components of a system model and introduce an
example model of a real-world automated air traffic control
architecture that will be used throughout the rest of the paper
to demonstrate the steps of LTL symbolic model checking as
we introduce them.

Whatever the original form of the system model, we
eventually translate it into some form of state-transition
system that is simply a type of graph called an automaton or
Kripke structure. As the name implies, this state-transition
system minimally must contain some set of system states
(the vertices of the graph) and transitions between states (the
edges of the graph). The system is described by a set Σ of
system variables, also called the system’s alphabet. Here, we
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define a state as a set of assignments to the system variables.
Therefore, each vertex in the graph is labeled by all of the
system variables and their values in that state. Each unique
variable assignment constitutes a unique state. Since not all
variable assignmentsmay be possible, the lower bound on the
number of states in a system model is 1 and the upper bound
is 2|Σ |, presuming Σ is a set of Boolean variables. We consider
a system to transition from one state to another (i.e. traverse
an edge from one vertex to another) when the values of one
or more system variables change from the values they had in
the originating state to the values they have in the destination
state.

Given that system design and modeling is largely an art
form, we simply list here the chief concerns to keep in mind
when creating the system model:

• Defining Σ : What is the minimum set of system variables
required to accurately describe the full set of behaviors of
the system?

• Level of abstraction: Which details of the system are
relevant to the verification process and how do we ensure
we have included all of these? Which details serve chiefly
to obscure the former? For example, when modeling
an automated air traffic control architecture, we include
in the model that the controller can request a specific
trajectory. However, details of the graphical user interface
(GUI) used to make this request are left out.

• Validation:
– system → model: Have we modeled the system

correctly?
– model → system: How will we ensure the resulting

hardware or software system created after verification
matches the model we have verified?

2.1. Modeling limitations

Not all systems can be modeled in such a way as to undergo
formal verification via symbolic model checking. However the
model is created, there is always the chance of creating more
states than can be reasoned about in computer memory and
having the model checking step halted by the state explosion
problem. This problem can be mitigated during the modeling
phase by being cognizant that, in the worst case, the model
checker will have to explore the entire state space. Keeping
the state space as small as possible by modeling only relevant
aspects of the system, minimizing the set of state variables,
utilizing sophisticated data structures and abstractions [29],
and representing concurrent threads independently to take
maximum advantage of partial order reductions performed
by the model checker, are some strategies for achieving this
goal. (Partial order reduction is a technique that recognizes
cases where multiple different interleavings of concurrent
processes in the system M have the exact same effect on
the property ϕ, thus only one such sequence needs to be
checked [30,16].)

In this paper, we presume the system model M to have
a finite state space defined over discretely-valued variables.
Indeed, the termination of this algorithm is guaranteed by
the finite nature of the state space we are exploring [31].
Some systems inherently have an infinite state space
and thus cannot be model checked using the techniques
presented here; instead, these systems must be verified

using specialized techniques for providing weaker assurances
about larger state spaces or using alternative verification
techniques, such as theorem proving. Bounded model checking
(BMC) [32] can be used to reason about some models whose
state spaces exceed the capacity of symbolic model checking.
For a given k, BMC tools search for a counterexample of length
k or shorter. They can prove the presence of errors in the
model but cannot be used to prove the absence of errors,
only the absence of errors reachable within k steps. Real-time
systems with continuous-valued clocks that can be described
in terms of linear constraints on clock values can be analyzed
using timed automata symbolic model checkers such as
UPPAAL [33]. Hybrid automata model checkers like HyTech
can verify some types of hybrid systems, that is, systems
with a mix of discrete and continuous variables [34] but the
infinite nature of the state space means termination of the
model-checking algorithm is not guaranteed. Increasing the
effectiveness of techniques for model checking real-valued
and infinite-state systems is currently a very active area of
research [35–40].

2.2. An example: the automated airspace concept for air
traffic control

Model checking is most frequently used for the formal
verification of safety-critical systems, or systems whose
failure could result in serious injury or death. Examples of
safety-critical systems include air traffic control, airplane
separation assurance algorithms, life support systems,
essential communications systems, hazardous environment
controls, medical equipment systems (such as those that
administer radiation or assist in surgery), train signaling
systems, and automotive control systems. Other types of
systems where model checking is frequently applied include
components of safety-critical systems, such as processor
chip designs, financial systems that could cause catastrophic
failure, missiles and other weapons systems, commercial
products whose malfunctioning would trigger catastrophic
financial costs for the manufacturer, and any other systems
where the cost of a single failure outweighs the cost of formal
verification.

We illustrate the symbolic model-checking algorithm for
LTL on a small example that describes the architecture for the
Automated Airspace Concept for air traffic control in NASA’s
Next Generation Air Transportation System (NGATS) [41],
displayed in Fig. 1.

The following rules govern the operation of this air traffic
control architecture:

• The auto-resolver is enabled by default and sends flight
commands to the aircraft.

• The aircraft may request a specific flight command.
• The controller may request a specific flight command.
• If a near-term conflict is detected (i.e. a loss of separation

is projected to occur within an amount of time below
the system’s threshold), TSAFE (the Tactical Separation
Assisted Flight Environment tool) automatically engages
and sends a flight command to resolve the conflict. TSAFE
commands always override all requests and commands
issued by the auto-resolver.
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Fig. 1 – Architecture: Automated Airspace Concept for Air
Traffic Control.

• Requests (either from the aircraft or from the controller)
may only be made when the airspace is clear of potential
short-term conflicts. Note that in this model, we uphold
the condition that neither of the request variables may be
true at the same time as the TSAFE_clear variable is false
by canceling any standing requests before acknowledging
a short-term conflict.

• Only one request may be made at a time. If the aircraft and
the controller both submit requests at the same time, only
one is registered.

LTL model checkers follow the automata-theoretic ap-
proach [5], where the relationship between programs and
their specifications is considered as a relationship between
languages [31]. We can model the air traffic control architec-
ture as an automaton whose language consists of the set of all
of the possible computations of the system. A computation is
essentially an infinite sequence of system states, correspond-
ing to the behavior of the system starting and then running
indefinitely. This method allows us to reason about the sys-
tem’s behavior by asking questions about automata. The al-
phabet, Σ , of our automaton is a set of system variables in the
form of Boolean-valued propositions that describe the current
state of the program. Table 2 enumerates the alphabet Σ and
Fig. 2 shows explicitly the automaton representing this au-
tomated air traffic control architecture. For clarity, each state
is labeled with both the variables that are true in that state
and the negations of the variables that are false in that state.
The transitions are labeled by actions that cause the system
to change state. The start state, State 1, is designated by an
incoming, unlabeled arrow not originating at any vertex.

The following is an example traversal of the automaton in
Fig. 2. We start in State 1. If the controller issues a request, we
move to State 4 and then if that request is granted by the auto-
resolver we move to State 3, where we see an auto-resolver
command has been issued in response to the controller’s
request. The detection of a conflict brings us to State 5
where only one action is available: to ignore the auto-resolver
command requested by the controller and move to State 6.
TSAFE issues a command to resolve the conflict, bringing us
to State 7, and the execution of that command returns us to
State 1 and a conflict-free airspace.

We illustrate a real system description for this protocol
using NuSMV [20,42] since it is well-documented [43], open-
source,5 and frequently used in industry [44–49]. However,
there are several tools available with similar capabilities in-
cluding CadenceSMV (which has nearly identical syntax) [19],
SAL-SMC [50], VIS [21], and others. The system description is
fairly straightforward: after declaring our set of system vari-
ables, we simply list the conditions that determine how each
of their values changes over time. We accomplish this using
an ASSIGN statement describing the value of each state vari-
able in the next state depending on the conditions in the cur-
rent state. The function next(var) denotes the value of the
variable var in the next state. If it is assigned using a case

statement then the value of var is set to the value on the right
hand side of colon whenever the condition on the left hand
side of the colon is true. (In the case of multiple true condi-
tions in a case statement, the path to follow is chosen non-
deterministically.) The function init() is used to specify the
initial values of each of the state variables. Since our exam-
ple is short and rather simple, with no concurrent processes
or subroutines, we place the entire specification in the main

module, which is where execution of the model begins. In ad-
dition to using this system description for model checking,
NuSMV also supports testing and simulation so one model
can be used for the entire process of design, development,
and formal verification of the system design.

Though our system model currently represents only the
automated air traffic control architecture and not yet any
of the specifications we wish to check, we think ahead and
include a statement turning on fairness. Most of the time
when we refer to fairness, we are referring to a type of
liveness property that specifies that something must happen
infinitely often, as discussed in Section 3.5. In that case, we
are asking NuSMV to reason over all fair paths, or paths
that start at an initial state on which all fairness constraints
are true infinitely often. Enabling FAIRNESS in general, as we
have done in Box I, restricts the model checker to considering
execution paths along which our main module is enabled for
execution infinitely often. Intuitively, if there were multiple
modules in our system model instead of just the one we need
to represent our small example, enabling FAIRNESS for the set
of modules would mean that each of them has the chance
to be executed infinitely often over our prospective timeline.
That is, every module has a fair shot at execution. In short,
the use of FAIRNESS in our model guarantees that the model
checker will return a representation of an infinite trace as a
counterexample for any specifications we wish to check hold
in this model. (See Box I.)

Though most systems are initially defined using assign-
ments per the system requirements as shown in Box I, should
the system already be in automaton form, we can specify it by
directly describing the system states and how we transition
between them. In other words, instead of our previous imper-
ative encoding, using assignment statements, we can equiva-
lently employ a declarative schema using logical constraints.
For clarity, we illustrate a direct specification of the automa-
ton in Fig. 2 in Box II. Here, INIT describes the initial state and
the TRANS statement lists all of the transitions in our model.

5 The source code and documentation are available for
download from: http://nusmv.irst.itc.it/.

http://nusmv.irst.itc.it/
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Table 2 – The system alphabet Σ : a set of Boolean-valued system variables.

Variable Description

AR_command Has a command been issued by the auto-resolver?
TSAFE_command Has a command been issued by TSAFE?

controller_request Has a request been issued by the controller?
aircraft_request Has a request been issued by the aircraft?

TSAFE_clear Does TSAFE detect the airspace is clear of conflicts?

Fig. 2 – Automaton: Automated Airspace Concept for Air Traffic Control.

This model is equivalent to the one presented in Box I. Both
are working NuSMV models that will be used as the basis for
examples throughout this paper. (See Box II.)

3. Specifying the behavior property

Real-world systems are routinely developed from English-
language specifications. Yet, once these systems are built,
there is no way to verify that the resulting systems follow
the English specifications. Consequently, there is also no way
to tell whether following the natural language specifications
is a desirable goal, i.e. whether the set of specifications is
internally consistent, logically sound, or complete. For formal
verification, English is quite simply too imprecise. Consider
the statement by Groucho Marx, “I once shot an elephant in
my pajamas. How he got in my pajamas I’ll never know,” or
the double-meaning of “Students hate annoying professors.”
In order to check that a system models its specifications,
it is necessary to have a formal, and very precise, notion
of exactly what the specifications say. Therefore, we use
logic for the specification language. Logic has the advantage
of being able to express system specifications in a concise

and unambiguous way that is mathematically rigorous and
thereby enables automation of the verification process.

Propositional Logic:

¬p not
p ∧ q and
p ∨ q or
p → q implies

We formalize simple grammatical connections using the
operators of propositional logic: ¬ (negation), ∧ (conjunction),
∨ (disjunction), → (implication). We reason about atomic
propositions, such as the state variables used in the example
of Section 2.2, which are Boolean-valued variables. We refer
to the set of atomic propositions as Prop. A formula is either
an atomic proposition or a sentence comprised of atomic
propositions connected by logical operators. The truth value
of a formula is determined by an assignment A , which is
a mapping of atomic propositions in the domain Σ to truth
values: A : Σ → {0,1}. Thus if there are n atomic propositions
in the domain, there are 2n possible assignments for a given
formula. A formula ϕ is satisfied by an assignment A that
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Box I.
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Box II.
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causes the overall formula to evaluate to true. We can think
of our system model M as a set of assignments — each state
represents a possible valuation of our state variables.

3.1. Temporal logics

Continuous systems necessarily involve a notion of time.
Propositional logic is not expressive enough to describe such
real systems. Yet, English descriptions are even less precise
once we involve time. Consider, for example, the following
English sentences:

• I said I would see you on Tuesday.
• “This is the worst disaster in California since I was

elected.” [California Governor Pat Brown]
• “When two trains approach each other at a crossing, both

shall come to a full stop and neither shall start up again
until the other has gone.” [Kansas State Legislature, early
1890’s]

As a result, Amir Pnueli introduced the notion of
using temporal logics, which were originally developed by
philosophers for investigating how time is used in natural
language arguments, to reason about concurrent systems [4].
(Burstall [51] and Kröger [52] independently proposed the
use of weaker forms of temporal reasoning about computer
programs at roughly the same time.) Temporal logics are
modal logics geared toward the description of the temporal
ordering of events. For most safety-critical systems, tying
the system model to an explicit universal clock is overkill;
it exacerbates the state explosion problem without adding
value to the verification process. It is sufficient simply to
guarantee that events happen in a certain partial (or, in some
cases, total) order. Temporal logics were invented for this
purpose. Because they describe the ordering of events in
time without introducing time explicitly, temporal logics are
particularly effective for describing concurrent systems [53].
Temporal logics conceptualize time in one of two ways. Linear
temporal logics consider every moment in time as having
a unique possible future. Essentially, they reason over a
classical timeline. In branching temporal logics, eachmoment
in time may split into several possible futures. In essence,
these logics view the structure of time as a tree, rooted at the
current time, with any number of branching paths from each
node of the tree (Fig. 3).

Pnueli’s historic 1977 paper [4] proposed the logic LTL.
This logic extended propositional logic with the temporal
operators G (for “globally”) and F (for “in the future”),
which we also call � and �, respectively, and introduced
the concept of fairness, which ensures an infinite-paths
semantics. LTL was subsequently extended to include the U
(“until”) operator originally introduced by Kamp in 1968 [54]
and the X (“next time”) operator from the temporal logic
U B (the unified system of branching time) [55]. In 1981, Clarke
and Emerson extended U B, thereby inventing the branching
temporal logic they named Computational Tree Logic (CTL)
and, with it, CTL model checking. Lichtenstein and Pnueli
defined model checking for LTL in 1985 [56]. (For a more
detailed history of the technical developments which lead
from Prior’s early observations on time and Church’s logical
specification of sequential circuits to LTL and automata-
theoretic model checking, see [57].) The combination of LTL

(a) Linear Temporal Logic.

(b) Branching Temporal Logic.

Fig. 3 – Two visions of the structure of time.

and CTL, called CTL∗, was defined by Emerson and Halpern in
1986, though there are currently no industrial model checkers
for this language.6 Since both model checking in general,
and symbolic model checking in particular, were originally
defined for CTL, and since LTL model checking is frequently
defined in the literature in relation to CTL model checking,
we would be remiss not to mention the logic CTL here.
Therefore, we follow the formal definition of LTL below with
a brief description of the logics CTL and CTL∗ along with a
short discussion of the merits and expressibility of LTL that
motivate LTL model checking.

3.1.1. LTL
Linear Temporal Logic (LTL) reasons over linear traces through
time. At each time instant, there is only one real future
timeline that will occur. Traditionally, that timeline is defined
as starting “now,” in the current time step, and progressing
infinitely into the future.

Linear Temporal Logic (LTL) formulas are composed of a
finite set Prop of atomic propositions, the Boolean connectives
¬, ∧, ∨, and →, and the temporal connectives U (until), R
(release), X (also called ⃝ for “next time”), � (also called G for
“globally”) and� (also calledF for “in the future”). Intuitively,
ϕ U ψ states that either ψ is true now or ϕ is true now and ϕ
remains true until such a time when ψ holds. Dually, ϕ R ψ,
stated ϕ releases ψ, signifies that ψ must be true now and
remain true until such a time when ϕ is true, thus releasing
ψ. Xϕ means that ϕ is true in the next time step after the
current one. Finally, �ϕ commits ϕ to being true in every time
step while�ϕ designates that ϕmust either be true now or at
some future time step. We define LTL formulas inductively:

Definition 1. For every p ∈ Prop, p is a formula. If ϕ and ψ are
formulas, then so are:

¬ϕ ϕ ∧ ψ ϕ → ψ ϕ U ψ �ϕ

ϕ ∨ ψ Xϕ ϕ R ψ �ϕ

6 There was one research prototype CTL∗ model checker called
AltMC (Alternating Automata-based Model Checker). Visser and
Barringer created AltMC in 1998 and explained how it could be
integrated into the industrial model checker SPIN [58].
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Furthermore, we define the closure of LTL formula ϕ, cl(ϕ),
as the set of all of the subformulas of ϕ and their negations
(with redundancies, such as ϕ and ¬¬ϕ, consolidated). LTL
formulas describe the behavior of the variables in Prop over a
linear series of time steps starting at time zero and extending
infinitely into the future.7 We satisfy such formulas over
computations, which are functions that assign truth values to
the elements of Prop at each time instant [60]. In essence, a
computation path π satisfies a temporal formula ϕ if ϕ is true
in the zeroth time step of π, π0.

Definition 2. We interpret LTL formulas over computations of
the form π : ω → 2Prop, where ω is used in the standard way
to denote the set of non-negative integers. We also use iff to
abbreviate “if and only if.” We define π, i � ϕ (computation π

at time instant i ∈ ω satisfies, or “models,” LTL formula ϕ) as
follows:

• π, i � p for p ∈ Prop iff p ∈ π(i).
• π, i � ¬ϕ iff π, i 2 ϕ.
• π, i � ϕ ∧ ψ iff π, i � ϕ and π, i � ψ.
• π, i � ϕ ∨ ψ iff π, i � ϕ or π, i � ψ.
• π, i � Xϕ iff π, i + 1 � ϕ.
• π, i � ϕ U ψ iff ∃j ≥ i, such that π, j � ψ and ∀k, i ≤ k < j, we

have π, k � ϕ.
• π, i � ϕ R ψ iff ∀j ≥ i, iff π, j 2 ψ, then ∃k, i ≤ k < j, such that
π, k � ϕ.

• π, i � �ϕ iff ∀j ≥ i, π, j � ϕ.
• π, i � �ϕ iff ∃j ≥ i, such that π, j � ϕ.

We take |H ϕ to be the set of computations that satisfy ϕ at
time 0, i.e., {π : π,0 � ϕ}. We define the prefix of an infinite
computation π to be the finite sequence starting from the
zeroth time step, π0, π1, . . . , πi for some i ≥ 0.

We now restate the model-checking problem: program M
satisfies (“models”) formula ϕ iff every path π rooted at the
initial state q of M satisfies ϕ, denoted M, q |H ϕ.

7 Though we will not discuss them here, some variations of
LTL also consider time steps that have happened in the past.
For example, we could add past-time versions of X and U
called Y (also called ⊖ for “previous time” or “yesterday”) and S
(since), respectively. Past-time LTL was first introduced by Kamp
in 1968 [54] but does not add expressive power to the future-time
LTL defined here [59].

Equivalences. While we have presented the most common
LTL syntax, operator equivalences allow us to reason about
LTL using a reduced set of operators. In particular, the most
common minimum set of LTL operators is ¬, ∨, X, and U.
From propositional logic, we know that (ϕ → ψ) is equivalent
to (¬ϕ ∨ ψ) by definition and that (ϕ ∧ ψ) is equivalent to
¬(¬ϕ∨¬ψ) by DeMorgan’s law.We can define (�ϕ) as (true Uϕ).
Similarly, (�ϕ) ≡ (false R ϕ). The expansion laws state that
(ϕ U ψ) = ψ∨ [ϕ∧ X(ϕ U ψ)] and (ϕ R ψ) = ψ∧ [ϕ∨ X(ϕ R ψ)].
The operators � and � are logical duals as (�ϕ) is equivalent
to (¬�¬ϕ) and (�ϕ) is equivalent to (¬�¬ϕ). Finally, U and
R are also logical duals. Since this last relationship is not
intuitive, we offer proof below. (Incidentally, X is the dual of
itself: (¬Xϕ) ≡ (X¬ϕ).)

Informally, ϕ U ψ signifies that either ψ is true now (in the
current time step) or ϕ is true now and for every following
time step until such a time when ψ is true. Note that this
operator is also referred to as strong until because ψ must be
true at some time. Conversely,weak until, sometimes included
as the operator W , is also satisfied if ϕ is true continuously but
ψ is never true. Formally,

π, i � ϕ Wψ iff either ∀j ≥ i, π, j � ϕ or ∃j ≥ i

such that π, j � ψ and ∀k, i ≤ k < j, we have π, k � ϕ.

R is the dual of U, so ϕ R ψ = ¬(¬ϕ U ¬ψ). We say that “ϕ
releases ψ” because ψmust be true now and, in the future, ¬ψ
implies ϕ was previously true. Note that at that point in the
past, both ϕ and ψ were true at the same time and that ϕmay
never be true, as long as ψ is always true. We can define R in
terms of the U-operator using the following lemma, where iff
is used in the standard way to abbreviate “if and only if.”

Lemma 1. ¬(¬a U ¬b) = a R b.

Proof. We use the formal semantic definitions of U and R,
given in [61].

π, i |H ξ U ψ iff for some j ≥ i, we have π, j |H ψ

and for all k, i ≤ k < j, we have π,
k |H ξ.

π, i |H ¬(ξ) U ¬(ψ) iff for some j ≥ i, we have π, j |H ¬(ψ)

and for all k, i ≤ k < j, we have π,
k |H ¬(ξ).

π, i |H ¬(ξ) U ¬(ψ) iff ((∃ j ≥ i : π, j |H ¬(ψ))

∧(∀ k, i ≤ k < j : π, k |H ¬(ξ))).

π, i |H ¬(¬(ξ) U ¬(ψ)) iff ¬((∃ j ≥ i : π, j |H ¬(ψ))

∧(∀ k, i ≤ k < j : π, k |H ¬(ξ))).

iff (¬(∃ j ≥ i : π, j |H ¬(ψ))

∨¬(∀ k, i ≤ k < j : π, k |H ¬(ξ))).

iff ((∀ j ≥ i : π, j |̸H ¬(ψ))

∨(∃ k, i ≤ k < j : π, k |̸H ¬(ξ))).

iff (∀ j ≥ i : π, j |H ψ

∨∃ k, i ≤ k < j : π, k |H ξ).

iff (∀ j ≥ i : π, j |̸H ψ

→∃ k, i ≤ k < j : π, k |H ξ).

iff for all j ≥ i if π, j |̸H ψ,

then for some k, i ≤ k < j we have
π, k |H ξ.

iff π, i |H ξ R ψ. �
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3.2. Logical expressiveness of LTL

In a paper on LTL symbolic model checking, inevitably
the question arises: why LTL? What are the alternative
specification logics? Why (and when) should we choose LTL?
In order to put LTL in the proper context, we briefly, but
formally, define the most viable alternatives and discuss
when LTL is (and is not) an appropriate choice.

3.2.1. CTL
Computational Tree Logic (CTL) is a branching time logic that
reasons over many possible traces through time. Historically,
CTL was the first logic used in model checking [2] and it
remains a popular specification logic. Unlike LTL, for which
every time instance has exactly one immediate successor,
in CTL a time instance has a finite, non-zero number of
immediate successors. A branching timeline starts in the
current time step, and may progress to any one of potentially
many possible infinite futures. In addition to reasoning along
a timeline, as we do for linear time logic, branching time
temporal operators must also reason across the possible
branches. Consequently, the temporal operators in CTL are
all two-part operators with one part specifying, similarly to
LTL, the action to occur along a future timeline and another
part specifying whether this action takes place on at least one
branch or on all branches.

Computational Tree Logic (CTL) formulas are composed of a
finite set Prop of atomic propositions, the Boolean connectives
¬, ∧, ∨, and →, and indivisible quantifier pairings of the
path quantifiers A (always, for all paths), and E (there exists
a path), with the linear temporal connectives of LTL: U
(until), X (also called ⃝ for “next time”), � (also called G for
“globally”) and� (also calledF for “in the future”). (See Fig. 4.)
We define CTL formulas inductively:

Definition 3. For every p ∈ Prop, p is a formula. If ϕ and ψ are
formulas, then so are:

¬ϕ ϕ∧ψ ϕ∨ψ ϕ → ψ A(ϕUψ) E (ϕUψ)

AXϕ EXϕ A�ϕ E�ϕ A�ϕ E�ϕ

CTL formulas describe the behavior of the variables in Prop
over a branching series of time steps starting at time zero and
extending infinitely into the future. As for LTL, computations
are functions that assign truth values to the elements of Prop
at each time instant.

Definition 4. We interpret CTL formulas over sets of possible
computations of the form π : ω → 2Prop. Due to the branching
nature of the logic, there may be many future paths possible
from any one time step: π0, π1, π2, . . . We will call the set of
all of the possible paths from the current time step Π . We
define Π , i � ϕ (set of possible computations π0...m ∈ Π at time
instant i ∈ ω satisfies CTL formula ϕ) as follows:

• Π , i � p for p ∈ Prop if p ∈ Π (i).
• Π , i � ¬ϕ if Π , i 2 ϕ.
• Π , i � ϕ ∧ ψ if Π , i � ϕ and Π , i � ψ.
• Π , i � ϕ ∨ ψ if Π , i � ϕ or Π , i � ψ.
• Π , i � AXϕ if (∀n)πn, i + 1 � ϕ.
• Π , i � EXϕ if (∃n)πn, i + 1 � ϕ.

Fig. 4 – Syntax of LTL and CTL.

• Π , i � A(ϕ U ψ) if (∀n)(∃j ≥ i), such that πn, j � ψ and
∀k, i ≤ k < j, we have πn, k � ϕ.

• Π , i � E (ϕ U ψ) if (∃n)(∃j ≥ i), such that πn, j � ψ and
∀k, i ≤ k < j, we have πn, k � ϕ.

• Π , i � A�ϕ if (∀n)(∀j ≥ i), πn, j � ϕ.
• Π , i � E�ϕ if (∃n)(∀j ≥ i), πn, j � ϕ.
• Π , i � A�ϕ if (∀n)(∃j ≥ i), such that πn, j � ϕ.
• Π , i � E�ϕ if (∃n)(∃j ≥ i), such that πn, j � ϕ.

Equivalences. The path quantifiers A and E , representing
universal and existential quantification over the branching
paths are duals and can be defined in terms of each
other. Similarly, � and � signify universal and existential
quantification over time steps along a single paths and are
therefore also duals. (Again, the U-operator is strong until
because its second argument must be true at some time.)
These realizations lead us to the following set of semantic
equivalences:

• (A�ϕ) ≡ (¬E�(¬ϕ)) ≡ (A(true U ϕ)).
• (A�ϕ) ≡ (¬E�(¬ϕ)) ≡ (¬E (true U ¬ϕ)).
• (E�ϕ) ≡ (¬A�(¬ϕ)) ≡ (E (true U ϕ)).
• (E�ϕ) ≡ (¬A�(¬ϕ)) ≡ (¬A(true U ¬ϕ)).
• (AXϕ) ≡ (¬EX(¬ϕ)).
• (EXϕ) ≡ (¬AX(¬ϕ)).
• (A[ϕ U ψ]) ≡ (¬E [(¬ψ) U(¬ϕ ∧ ¬ψ)]) ∧ (¬E�(¬ψ)).

There is an automata-theoretic approach to branching
time model checking, similar to the ideas described in this
paper for LTL. While we do not translate branching temporal
formulas into nondeterministic tree automata due to the
double exponential blow-up inherent in this process, we
can translate them into alternating tree automata in linear
time [7].

3.2.2. LTL vs CTL
The logical expressiveness of LTL and CTL is incompara-
ble [62]. (See Fig. 5.) Since CTL allows explicit existential quan-
tification over paths, it is more expressive in some cases
where we want to reason about the possibility of the exis-
tence of a specific path through the transition system model
M, such as when M is best described as a computation tree.
For example, there are no LTL equivalents of the CTL formu-
las (EX p) and (A�E�p) since LTL cannot express the pos-
sibility of p happening on some path (but not necessarily all
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Fig. 5 – Venn Diagram: expressiveness of common
temporal logics.

paths) next time, or in the future. LTL describes executions of
the system, not the way in which they can be organized into a
branching tree. Intuitively, it is difficult (or impossible) to ex-
press in LTL situations where distinct behaviors occur on dis-
tinct branches at the same time. Conversely, it is difficult (or
impossible) to express in CTL some situations where the same
behavior may occur on distinct branches at distinct times, a
circumstance where the ability of LTL to describe individual
paths is quite useful. Realistically, the former rarely happens
and LTL turns out to bemore expressive from a practical point
of view than CTL [63].

Model checking time complexity. The model-checking algorithms
for LTL and CTL are different. The major argument in favor
of using a branching time logic, like CTL, instead of LTL for
property specification is that the model-checking problem
for CTL has lower computational complexity than for LTL.
Specifically, let |M| indicate the size of the system model
in terms of state space and |ϕ| indicate the size of the
specification calculated as the total number of symbols:
propositions, logical connectives, and temporal operators.
Then the model-checking algorithm for CTL runs in time
O(|M||ϕ|) [64] and the model-checking algorithm for LTL
runs in time |M| · 2O(|ϕ|) [56]. Intuitively, this is because
CTL is state-based (i.e. reasoning over states in time), and
this set of states is easily converted into an automaton
whereas the succinct path-based model of LTL (where many
possible paths may pass through a single state) must be
expanded. This difference in the computational complexity
of translating the specification ¬ϕ into the Büchi automaton
A¬ϕ is solely responsible for the difference in the model
checking computational complexity for an LTL formula ϕ

and for a CTL formula ϕ. For LTL, this logic-to-automaton
translation step is clearly a bottleneck in the model-checking
algorithm; the problem of checking Büchi automata8 AM, ¬ϕ

for nonemptiness is NLOGSPACE-complete [65] and decidable
in linear time [66]. There is no hope of reconciling the
time complexity of the general model-checking problem for
LTL with that of CTL since the model-checking problem for
LTL is PSPACE-complete [67]. The best algorithms for LTL
model checking, which are exponential in the length of the
formula but linear in the size of the model, were proposed
by Lichtenstein and Pnueli [56] and Vardi and Wolper [5], the
latter algorithm being the basis for most LTL model checking
tools today.

However, the comparison of the specification logics LTL
and CTL by time complexity is somewhat misleading and

8 Büchi automata are formally defined in Section 3.4.

certainly not significant enough to be the sole deciding factor
of which logic to use for specification. Thoughmodel checking
can be done in time linear in the size of the specification
for CTL [64,3] the requirement for double-operators means
that CTL formulas tend to be longer and more complicated
than LTL formulas. In fact, it is not entirely clear how much
effect the exponential blow-up for LTL model checking has
in practice given that the size of most LTL specifications is
very small. Furthermore, if we examine specific, practical
variants of the model-checking problem for CTL, we find that
the complexity dominance of this logic does not hold [63].
Performing specification debugging via satisfiability checking
as we describe in Section 3.3 is still PSPACE-complete
for LTL [67] but is EXPTIME-complete for CTL [68,69]. For
the practical model checking applications of compositional
verification, verification of open or reactive systems (i.e. those
systems that interact with an environment), verification
of concurrent systems, and automata-theoretic verification,
LTL-based algorithms either dominate those for CTL or
perform similarly [70].

Since there are fast, efficient tools for LTL model checking,
and it is questionable to what extent this theoretical
difference affects the process of model checking in practice,
we focus on the language that is more suitable for
specification. From a system design point of view, it is more
important to be able to write clear and correct specifications
to input into the model checker.

Usually, we want to describe behavioral, rather than
structural, properties of the model, making LTL the better
choice for specification since such properties are easily
expressed in LTL but may not be expressible in CTL. For
example, we may want to say that p happens within the next
two time steps, (X p ∨ XX p), or that if p ever happens, q will
happen too, (�p → �q), neither of which is expressible in
CTL [71]. Similarly, we cannot state in CTL that if p happens
in the future, q will happen in the next time step after that,
which is simply �(p ∧ X q) in LTL [72]. Worst of all, it is not
obvious that these useful properties should not be expressible
in CTL. Indeed, a thorough comparison of the two logics
concludes that CTL is unintuitive, hard to use, ill-suited for
compositional reasoning, and fundamentally incompatible
with semi-formal verification while LTL suffers from none
of these inherent limitations and is better suited to model
checking in general [63].

LTL is a fair language whereas CTL is not. That is to say
that LTL can express properties of fairness, including both
strong fairness and weak fairness whereas CTL cannot (though
CTL model checkers generally allow users to specify fairness
statements separately to account for this shortcoming). For
example, the LTL formula (��p → �q), which expresses the
property that infinitely many p’s implies eventually q, is the
form of a common fairness statement: a continuous request
will eventually be acknowledged. Yet this sentiment is not
expressible in CTL. Since fairness properties occur frequently
in the specifications we wish to verify about real-life reactive
systems, this adds to the desirability of LTL as a specification
language.

For another example, the common invariance property
��p, meaning “at some point, p will hold forever” cannot
be expressed in CTL. It is difficult to see why this formula
is not equivalent to the CTL formula A�A�p; after all,
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Fig. 6 – A situation where the LTL formula ��p holds but
the CTL formula (A�A�p) does not.

Fig. 7 – A situation where the three equivalent formulas
LTL formula X�p, LTL formula �X p, and CTL formula
AXA�p hold but the CTL formula (A�AX p), which is
strictly stronger, does not.

we are basically claiming that on all paths, there’s a point
where p holds in all future states. (The standard semantic
interpretation of LTL corresponds to the “for all paths” syntax
of CTL. For this reason, we consider there to be an implicit A
operator in front of all LTL formulas when we compare them
to CTL formulas.) To illustrate the inequivalence of these two
formulas, we show in Fig. 6 a timeline that satisfies ��p but
does not satisfy A�A�p. Note that A�A�p does not hold
along the vertical spine in particular — there is never a point
where A�p holds along this path. There is always one child
where p holds forever and one child where ¬p holds.

Another frequently cited example of the unintuitiveness
of CTL is the property that the CTL formula AXA� p is not
equivalent to the formula (A�AX p). Again, the distinction
is subtle. The former formula states that, as of the next time
step, it is true that p will definitely hold at some point in
the future or, in other words, p holds sometime in the strict
future. This formula is equivalent to the LTL formulas X�p
and �X p. On the other hand, the meaning of (A�AX p)
is the strictly stronger (and actually quite strange) assertion
that on all paths, in the future, there is some point where p
is true in the next time step on all of the branches from that
point. Fig. 7 illustrates this subtlety. Note that in this timeline,
p is true in the strict future along every path but there is not
a point on every path where p is true in the next step on all
branches.

These examples illustrate why LTL is frequently consid-
ered a more straightforward language, better suited to spec-
ification and more usable for verification engineers and sys-
tem designers. LTL is the preferred logic of the two for general
property specification and on-the-fly verification [73]. Verifi-
cation engineers have found expressing specifications in LTL

to bemore intuitive, and less error-prone, than using CTL, par-
ticularly for verifying concurrent software architectures [74].
The vast majority of CTL specifications used in practice are
equivalent to LTL specifications; it is rare that the added abil-
ity to reason over computation tree branches is needed and
it frequently requires engineers to look at their designs in an
unnatural way [63]. The expressiveness, simplicity, and us-
ability of LTL, particularly for practical applications like open
system or compositional verification, and specification de-
bugging, make it a good choice for industrial verification.

3.2.3. CTL∗

Emerson and Halpern first invented the logic CTL∗ in
1983 [75]. This logic combines the syntaxes of the two
logics LTL and CTL. It includes all of the logical operators
in LTL and both path quantifiers of CTL but does not have
the CTL restriction that temporal operators must appear in
pairs. Both LTL and CTL are proper subsets of CTL∗, as are
all combinations of LTL and CTL formulas; CTL∗ is more
expressive than both LTL and CTL combined. For example, the
formulas E(��p) and A(��p)∨ A�(E�p) are both in CTL∗ but
in neither LTL nor CTL.

However, this expressive power comes at a great cost. The
model-checking problem for CTL∗ is PSPACE-complete [67],
which the same general complexity as for LTL, though the
algorithm is considerably more complex to implement and
there are currently no model checkers for this logic. Indeed,
for practical model-checking problems such as compositional
verification and verification of open or reactive systems
(i.e. those systems that interact with an environment)
CTL∗ is dominated by LTL [70]. Furthermore, the simple
task of specification debugging via satisfiability checking is
2EXPTIME-complete for CTL∗ [76,77]. Simply translating a
CTL∗ specification into an automaton for model checking
involves a doubly-exponential blow-up [78]. So, despite the
deceptive time complexity for the general model checking
problem, adding branching to LTL is not free. In practice,
should LTL prove to be too limited to express a desired
property, CTL∗ is almost certainly sufficient [73]. However,
the lack of industrial model-checking tools that accept CTL∗

specifications is a deterrent to the use of this logic.

3.2.4. Industrial logics based on LTL
In several cases, industrial companies have defined exten-
sions of LTL, specialized for their verification needs. Usually
these linear time logics add operators to make the expres-
sion of specific properties easier and to extend the specifica-
tion language to full ω-regularity. The optimal position in the
trade-off between logical expressiveness and model checking
time complexity remains under discussion.

Definition 5. An ω-regular expression is an expression of the
form


i αi(βi)

ω where i is non-zero and finite and α and β are
regular expressions over the alphabet Σ .

We refer to the standard definition of a regular expression,
comprised of the elements of the alphabet Σ , parentheses,
and the operators +, ·, and ∗ for union, concatenation, and
star-closure, respectively. An ω-regular expression adds the
exponent ω that, in some sense, extends the ∗-exponent since
a∗ designates an arbitrary, possibly zero, finite number of
repetitions of a while aω designates an infinite number of
repetitions of a.
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Definition 6. An ω-regular language is one that can be
described by an ω-regular expression. Also, a language is
ω-regular if and only if there exists a Büchi automaton
that accepts it. (We discuss Büchi automata in detail in
Section 3.4.) The family of ω-regular languages is closed under
union, intersection, and complementation.

LTL can express a strict subset of ω-regular expressions;
it can describe specifically the ∗-free ω-regular events. For
example, LTL cannot express the sentiment that a particular
event must occur exactly every n time steps of an infinite
computation and that this event may or may not occur during
any of the other time steps. Wolper first pointed this out and
defined Extended Temporal Logic (ETL), which augmented
LTL with operators corresponding to right-linear grammars,
thus expanding the expressiveness to all properties that
can be described by ω-regular expressions [79]. Vardi and
Wolper followed this by proposing ETLs where the temporal
operators are defined by finite ω-automata, which provide
useful tools for hardware specification [65]. However, model
checking with ETL involves a difficult complementation
construction for Büchi automata [80]. Banieqbal and Barringer
and, separately, Vardi created a linear µ-calculus by
extending LTL with fixpoint operators, which allows for
a more natural description of constructs like recursive
procedures and modules in compositional verification [81,
82]. Sistla, Vardi, and Wolper’s Quantified Propositional
Temporal Logic (QPTL) avoids common user difficulties with
fixpoint calculi and achieves ω-regularity instead by allowing
quantification over propositional variables but at the cost of
a nonelementary time complexity [83]. Emerson and Trefler
proposed dealing with real-time correctness properties while
avoiding the nonelementary time complexity by using Real
Time Propositional LTL (RTPLTL), which adds time bounds to
temporal operators referencing multiple independent clocks
but can be checked in time exponential in the size of the
regular expression [84].

Verification engineers in industry have also extended
LTL to suit their specific needs. After successful verification
efforts from 1995 to 1999 using symbolic model checking
with specifications in FSL, a home-grown linear temporal
logic specialized for hardware checking [85], Intel developed
the formal specification language ForSpec [86]. The temporal
logic underlying ForSpec, called FTL, extends past-time LTL
to add explicit operators for manipulating multiple clocks
and reset signals, expressions for reasoning about regular
events, and time bounds on the temporal operators that
allow users to specify time windows during which an
operator is satisfied. The consequence of the increased
expressivity of FTL is that checking satisfiability is EXPSPACE-
complete. IBM developed their own “syntactic sugar” [87] in
parallel from the early 1990s. IBM’s Sugar extends LTL with
Sugar Extended Regular Expressions (SEREs), the ability to
explicitly reference multiple independent clocks, and limited
Optional Branching Extensions (OBEs) [88]. Motorola’s CBV
and Verisity’s Temporal e [89] are also linear-time logics
that achieve full ω-regularity by adding regular expressions
and clock operations. In 2003, the standardization committee
Accellera, considering these four industrial specification
languages, announced the industry standard languages
SystemVerilog Assertion (SVA) language [90] and Property

Specification Language (PSL), which is based chiefly on Sugar
with heavy influence from ForSpec [91,92,57]. It is worth
noting that restricted variants of LTL have also proved useful
for specializing the logic without increasing computational
complexity. For example, Allen Linear Temporal Logic
(ALTL) [93] marries a restricted LTL, without X-, U-, or
R-operators, with Allen’s temporal intervals [94], but ALTL
satisfiability checking is only NP-complete.

In summary, the industrial languages described in this
section are all based on LTL and use model checking methods
similar to those described in this paper. Thus, insights into
LTL model checking extend to all of these languages.

3.3. Specification debugging

Just as designing a bug-free system is difficult, causing us to
employ model checking to find the bugs, writing correct spec-
ifications to check the system is difficult. Therefore, an impor-
tant step in between writing specifications and performing
the model checking step is specification debugging. As spec-
ifications are usually significantly smaller than the systems
they describe, they are significantly easier to check. The goal
of specification debugging is to answer as best as possible the
question “do the specifications say what I meant?” Though it
is impossible to answer this question absolutely, it is usually
sufficient to run a series of tests on the set of specifications
meant to flag situations where the specifications as written
clearly cannot match their authors’ intentions.

When the model does not satisfy the specification, model-
checking tools accompany this negative answer with a
counterexample, which points to an inconsistency between
the system and the desired behaviors. It is often the case
that there is an error in the system model or in the
formal specification. Such errors may not be detected when
the answer of the model-checking tool is positive: while
a positive answer does guarantee that the model satisfies
the specification, the answer to the real question, namely,
whether the system has the intended behavior, may be
different. We need to ask two questions:

1. If there is disagreement between the system model and
the specification, which one has the error?

2. If there is agreement, is this caused by an error? (A positive
model checking result does not mean there is no error. For
example, the specification could have a bug!)

Specification testing can be performed by specification
authors writing small systemmodels that they believe should
or should not satisfy each specification and then verifying
this is the case via model checking. However, this process can
be a time-consuming, tedious, and error-prone one.

The realization of this unfortunate situation has led
to the development of several sanity checks for formal
verification [95]. The goal of these checks is to detect
errors in the system model or the properties. Sanity checks
in industrial tools are typically simple, ad hoc, tests,
such as checking for enabling conditions that are never
enabled [96]. Standard specification testing can also be
preformed more intelligently using concept analysis, which
produces a hierarchical set of clusters of test traces grouped
by similarities [97]. This technique allows the specification
author to inspect a small number of clusters instead of a large
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number of individual traces and use the similarities in the
clusters to help determine whether the set of traces in each
cluster points to specification error(s) or not.

Of course, it is extremely desirable to run automated tests
on specifications. Vacuity detection provides a systematic ap-
proach for checking whether a subformula of the specifica-
tion does not affect the satisfaction of the specification in the
model. Intuitively, a specification is satisfied vacuously in a
model if it is satisfied in some non-interesting way. For ex-
ample, the Linear Temporal Logic (LTL) specification �(req →

�grant) (“every request is eventually followed by a grant”) is
satisfied vacuously in a model with no requests. While vacu-
ity checking cannot ensure that whenever a model satisfies
a formula, the model is correct, it does identify certain posi-
tive results as vacuous, increasing the likelihood of capturing
modeling and specification errors. Several papers on vacuity
checking have been published over the last few years [98–105],
and various industrial model-checking tools support vacuity
checking [98–100].

At a minimum, it is necessary to employ LTL satisfiability
checking [106]. If the specification is valid, that is, true in
all models, then model checking this specification always
results in a positive answer. Basically, the specification is
irrelevant. Consider for example the specification �(b1 →

�b2), where b1 and b2 are propositional formulas. If b1
and b2 are logically equivalent, then this specification is
valid and is satisfied by all models. Clearly, if a formal
property is valid, then this is certainly due to an error.
Similarly, if a formal property is unsatisfiable, that is, true
in no model, then this is also certainly due to an error. For
example, if the specification is �(b1 ∧ �b2) where b1 and b2
are contradictory, then the specification can never be true.
Even if each individual property written by the specifier is
satisfiable, their conjunction may very well be unsatisfiable.
Recall that a logical formula ϕ is valid iff its negation ¬ϕ is not
satisfiable. Thus, as a necessary sanity check for debugging
a specification, we must ensure that both the specification ϕ
and its negation ¬ϕ are satisfiable and that the conjunction of
all specifications is satisfiable.

Fortunately, this check is easily performed using standard
model-checking tools to check the specifications against a
universal model before checking them against the system
model. A basic observation underlying this conclusion is that
LTL satisfiability checking can be reduced to model checking.
Consider a formula ϕ over a set Prop of atomic propositions. If
a model M is universal, that is, it contains all possible traces
over Prop, then ϕ is satisfiable precisely when the model M
does not satisfy ¬ϕ. Thus, it is easy to include satisfiability
checking using LTL model-checking tools as a specification
debugging step in the verification process.9

9 In contrast, for branching-time logics such as CTL or CTL∗,
satisfiability checking is significantly harder thanmodel checking.
For LTL, both satisfiability checking and model checking are
PSPACE-complete with respect to formula size [67]. On the
other hand, with respect to formula size, model checking is
NLOGSPACE-complete for CTL [107] and PSPACE-complete for
CTL∗ [66], while satisfiability is EXPTIME-complete for CTL [69,68]
and 2EXPTIME-complete for CTL∗ [77,76]

3.4. Translating the property into a symbolic automaton

In LTL model checking, we check LTL formulas representing
desired behaviors against a formal model of the system
designed to exhibit these behaviors. To accomplish this task,
we employ the automata-theoretic approach, in which the
LTL formulas must be translated into Büchi automata10 [5].
This step is performed automatically by the model checker.

Definition 7. A Büchi Automaton (BA) is a quintuple (Q,Σ , δ,
q0, F) where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q × Σ × Q is a transition relation.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final states.

A run of a Büchi automaton over an infinite word w =

w0,w1,w2, . . . ∈ Σ is a sequence of states q0,q1,q2, . . . ∈ Q
such that ∀i ≥ 0, δ(qi,wi) = qi+1. An infinite word w is accepted
by the automaton if the run over w visits at least one state in F
infinitely often. We denote the set of infinite words accepted
by an automaton A by Lω(A). A Generalized Büchi Automaton
(GBA) is one for which F is a set of acceptance sets such that
an infinite word w is accepted by the automaton if the run
over w visits at least one state in each set in F infinitely often.

We also define the extended transition relation δω : Q×Σω
×Q,

which takes a string, rather than a single character, as the
second argument and yields the result of reading in that
string. Let λ represent the empty string. Then we can define
δω recursively. For all q ∈ Q, w ∈ Σω, σ ∈ Σ :

δω(q, λ) = q

δω(q,wσ) = δ(δω(q,w), σ).

A computation satisfying LTL formula ϕ is an infinite word
over the alphabet Σ = 2Prop, which is accepted by the Büchi
automaton Aϕ corresponding to ϕ. For this reason, Aϕ is
also called a tester for ϕ; it characterizes all computations
that satisfy ϕ. The set of computations of ϕ comprise the
language Lω(Aϕ). Every LTL formula has an equivalent Büchi
automaton. The next theorem relates the expressive power of
LTL to that of Büchi automata.

Theorem 2. 11 Given an LTL formula ϕ, we can construct a
nondeterministic Büchi automaton Aϕ =


Q,Σ , δ,q0, F


such that

|Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly |H ϕ.

10 Büchi automata were introduced by J.R. Büchi in 1962 [108].
11 The proof in this paper was inspired by the direct proof

techniques employed in [56] (which proved a variant of Theorem 2
that reasons more directly over graphs instead of Büchi
automata), [109], and [72]. Other proof strategies include the use of
alternating automata [61,110]. Alternatively, one can consider the
Büchi automaton Aϕ to be a combination of two automata, a local
automaton that reasons about consecutive sequences of states
and an eventuality automaton that reasons about eventuality
formulas (U− or F -subformulas) [5,65,111,112]. (Note that [65,
111,112] proved a variant of Theorem 2 for types of Extended
Temporal Logic (ETL) that subsume LTL.)
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Proof of Theorem 2. For simplicity, presume ϕ is in negation
normal form (¬ appears only preceeding propositions) and
the temporal operators � and� have been eliminated via the
equivalences described in Section 3.1.1.

Recall that the closure of LTL formula ϕ, cl(ϕ) is the set
of all of the subformulas of ϕ and their negations (with
redundancies such as ϕ and ¬¬ϕ consolidated). Specifically,

• ϕ ∈ cl(ϕ).
• ¬ψ ∈ cl(ϕ) → ψ ∈ cl(ϕ).
• ψ ∈ cl(ϕ) → ¬ψ ∈ cl(ϕ).
• ξ ∧ ψ ∈ cl(ϕ) → ξ, ψ ∈ cl(ϕ).
• ξ ∨ ψ ∈ cl(ϕ) → ξ, ψ ∈ cl(ϕ).
• X ψ ∈ cl(ϕ) → ψ ∈ cl(ϕ).
• ξ U ψ ∈ cl(ϕ) → ξ, ψ ∈ cl(ϕ).
• ξ R ψ ∈ cl(ϕ) → ξ, ψ ∈ cl(ϕ).

Recall that the expansion laws state that (ξ U ψ) = ξ ∨ [ϕ ∧

X(ξ U ψ)] and (ξ R ψ) = ψ ∧ [ξ ∨ X(ξ R ψ)]; we can use
these laws to construct an elementary set of formulas. An
elementary set of formulas with respect to the closure of ϕ is
a maximal, consistent subset of cl(ϕ). A cover C of a set of
formulas Ψ is a set of sets C = C0,C1, . . . such that


ψ∈Ψ ψ ↔

Ci∈C

γ∈Ci

γ. In other words, any computation satisfying the
conjunction of the formulas in the set Ψ also satisfies the
conjunction of the formulas in at least one of the cover sets
Ci ∈ C. An elementary cover is a cover comprised exclusively of
elementary (maximal, consistent) sets of formulas.

We define each elementary cover set Ci ∈ C for the cover C
of formula ϕ to have the following properties:

1. Ci ⊆ cl(ϕ)
2. Ci is logically consistent (i.e. does not contain any logical

contradictions). Specifically, for all subformulas ξ, ψ ∈

cl(ϕ),
• ψ ∈ Ci ↔ ¬ψ ∉ Ci
• ξ ∧ ψ ∈ Ci ↔ ξ, ψ ∈ Ci.
• ξ ∨ ψ ∈ Ci ↔ (ξ ∈ Ci) or (ψ ∈ Ci).

3. Ci is temporally consistent (i.e. logically consistent with
respect to temporal operators). We use ⇒ to denote
subformulas that are syntactically implied by a set Ci.
• (ξ U ψ ∈ cl(ϕ)) → [(ψ ∈ Ci) ⇒ (ξ U ψ ∈ Ci)].
• [(ξ U ψ ∈ Ci) ∧ (ψ ∉ Ci)] → (ξ ∈ Ci).
• (ξ R ψ ∈ cl(ϕ)) → [(ψ ∈ Ci) ⇒ (ξ R ψ ∈ Ci)].

4. Ci is maximal. That is, for every subformula ψ ∈ cl(ϕ), either
ψ ∈ Ci or ¬ψ ∈ Ci.

We can obtain an elementary cover of ϕ by applying
the expansion laws to ϕ until ϕ is a propositional formula
in terms of only constants (true or false), propositions, or
X-rooted subformulas. Then ϕ has no U- or R-formulas
occurring at the top level. We convert this expanded formula
into disjunctive normal form (DNF) to obtain the cover. Each
disjunct is an elementary set and the set of disjuncts is the
elementary cover of ϕ. We round out each set Ci with the
formulas in cl(ϕ) that are syntactically implied by Ci according
to the rules listed above. We define a state in our automaton
Aϕ for each cover set Ci in the cover of ϕ. We label each such
state with the subformulas in the elementary set to which it
corresponds. (Note that the states in the cover of ϕ will be
labeled by ϕ.) We will use the X-subformulas of each state to
define the transition relation.

Define q0 as the state or set of states in the cover of ϕ
(i.e. those labeled by ϕ). If there is more than one such state

and we do not want to define q0 to be a set of initial states, we
can create a singular start state with outgoing λ-transitions12

to all such states. That is, for ϕ-labeled states s0, s1, . . . , we
define δ(q0, λ) = s0; δ(q0, λ) = s1; . . ..

Initially, we set Q = q0, which is the cover of ϕ. For each
state q ∈ Q, we apply the expansion laws and compute the
successors of q as a cover of {ψ : Xψ ∈ q}. For each computed
successor state q′ of q, we add a transition in δ, creating a new
state q′

∈ Q if necessary. That is, ∀q′, σ : δ(q, σ) = q′,Xψ ∈ q →

ψ ∈ q′. We iterate in this fashion until all X-subformulas of all
of the states in Q have been covered. The result is a closed set
of elementary covers, such that there is an elementary cover in
the set for each X-subformula of each disjunct of each cover
in the set.13 Constructed in this way, Q is at most the set of
all elementary sets of formulas in the closure of ϕ (2cl(ϕ)) and
is thus bounded by 2O(|ϕ|).

Finally, we define the acceptance conditions, ensuring that
each U-subformula is eventually fulfilled and not simply
promised forever. We do this by creating for every subformula
of ϕ of the form ξ U ψ a set Fξ U ψ ∈ F containing all states
labeled by ψ, which fulfill the U-subformula, and all states
not labeled by (ξ U ψ), which do not promise it. This is the
basic construction by Daniele, Giunchiglia, and Vardi [114].

We prove each direction separately based upon these
definitions.

If: π ∈ Lω(Aϕ) → π |H (ϕ)

Presume π ∈ Lω(Aϕ). Then there is an accepting run in
Aϕ that we will label ρ = q0,q1, . . . which, by definition of
Q, corresponds to the sets C0,C1, . . .. By the definition of q0
as the cover of ϕ, we know that ϕ holds in this state. Stated
another way, the atomic propositions that are true in q0 are
true in the first time step of a satisfying computation of ϕ;
π0 ∈ C0. It remains to show that the transition relation and
acceptance conditions imply that π |H (ϕ), or, in other words,
(C0 ∩ Prop)(C1 ∩ Prop)(C2 ∩ Prop) . . . |H ϕ. We show by structural
induction on the structure of ψ ∈ cl(ϕ) that ψ ∈ C0 ↔ π |H (ψ).

Base case: |ψ| = 1. Then ψ ∈ Prop. The claim follows from
the definition of the labeling of states in Q, i.e. that in our
construction, Ci = {ψ ∈ cl(ϕ)|(Ci ∩ Prop)(Ci+1 ∩ Prop)(Ci+2 ∩

Prop) . . . |H ψ}.
Induction step: Presume the claim holds for subformulas

ξ, η ∈ cl(ϕ). Then it holds for:

1. ψ = ¬ξ. The claim follows from the definition of the
labeling of states in Q.

2. ψ = Xξ. From the definition of δ, Xξ ∈ Ci → ∀qi+1, σ :

δ(qi, σ) = qi+1, ξ ∈ Ci+1. Therefore, ψ ∈ Ci ↔ π |H (ψ).

3. ψ = ξ ∧ η. The claim follows from the definition of the
labeling of states in Q.

4. ψ = ξ∨ η. The claim follows from 1, 3, and DeMorgan’s law.

12 We refer to λ as the empty string. The presence of a
λ-transition in a nondeterministic automaton indicates that the
automaton may traverse that transition at any time, without
progressing any further along the computation path.
13 Note that any LTL formula has infinitely many elementary

covers and which one is chosen for this construction in
practice can significantly affect the performance of the model-
checking problem. Thus, many researchers study optimizing this
construction [113–119,9].
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5. ψ = ξ U η. If π |H ψ then there is some i ≥ 0 such
that πi, πi+1, . . . |H η and ∀j : 0 ≤ j < i, πj, πj+1, . . . |H ξ.
From our induction hypothesis, we have that η ∈ Ci and
ξ ∈ Cj. By induction we have that ξ U η ∈ Ci,Ci−1, . . . ,C0.
From our construction, if (ξ U η) ∈ C0 then either ∀i ≥

0 : ξ,X(ξ U η) ∈ Ci and η ∉ Ci or ∃i ≥ 0 : η ∈ Ci and
∀j : 0 ≤ j ≤ i, ξ,X(ξ U η) ∈ Ci. Since we know that ρ, the
run of π in Aϕ, is accepting, by the definition of F, only the
latter case is possible. Therefore, ψ ∈ C0 ↔ π |H (ψ).

6. ψ = ξRη. The claim follows from 1, 5, and the definition of
R.

Only if: π |H (ϕ) → π ∈ Lω(Aϕ)
Since q0 is defined by the cover of ϕ, there must be a state

q ∈ q0 such that π0 |H q. In general, we want to show that
∀i : i ≥ 0, πi |H qi, so we show how to choose πi+1. We know
there is a set Ci+1 ∈ δ(Ci, πi) such that πi, πi+1, . . . |H Ci,Ci+1, . . .

since for all i:

• The atomic propositions that are true in π0 are true in the
state qi of our run: πi ∈ Ci.

• For every formula of the form Xψ in Ci, we know that
πi, πi+1, . . . |H Xψ, which means πi+1, πi+2, . . . |H ψ, so
ψ ∈ Ci+1.

• For every formula of the form ξ U ψ in Ci, we know that
πi, πi+1, . . . |H ξ U ψ, which means either πi, πi+1, . . . |H ψ,
so ψ ∈ Ci, or πi, πi+1, . . . |H ξ ∧ X(ξ U ψ), so ξ ∈ Ci and
(ξ U ψ) ∈ Ci+1.

Furthermore, we know from the definition of F that for all
subformulas of the form (ξU ψ) ∈ cl(ϕ), there is a set Fξ U ψ ∈ F
containing all Ci : (ψ ∈ Ci) ∨ ((ξ U ψ) ∉ Ci). We can choose an
accepting run as follows. Let U be the set of U-subformulas
not fulfilled in the current state, Ci. Then ∀ξ, ψ : ((ξ U ψ) ∈

Ci) ∧ ψ ∉ Ci, (X(ξ U ψ) ∈ Ci). For each such formula in U
in succession, we choose the shortest path from the current
state to a state that contains ψ, thus fulfilling the claim. We
know there must exist such a path for each U-subformula by
the construction of δ such that Xψ ∈ Ci → ψ ∈ Ci+1, and by
the definition of F. Note that if some state Ci ∉ Fξ U ψ, then
((ξ U ψ) ∈ Ci) and (ψ ∉ Ci) and, also, πi, πi+1, . . . |H (ξ U ψ) but
πi, πi+1, . . . |̸H ψ. This creates a contradiction since we know
that π |H (ϕ), by definition of Büchi acceptance, necessitates
that π passes through a state in each set Fξ U ψ ∈ F infinitely
often. �

This theorem reduces LTL satisfiability checking to
automata-theoretic nonemptiness checking, as ϕ is satisfiable
iff models(ϕ) ≠ ∅ iff Lω(Aϕ) ≠ ∅.14

3.5. The two types of properties

There are two fundamental properties we can prove about
programs: safety and liveness. These categories were originally
introduced by Leslie Lamport [120]. They are also referred to
as invariance and eventuality, respectively [59]. Distinguishing
between the two types of properties is helpful because
different techniques can be used to prove each type
[121,122]. For example, taking advantage of the structure of

14 For another version of this proof with several illustrative
examples, see [72].

safety properties can be used to optimize assume-guarantee
reasoning [122]. Showing a safety property holds involves
an invariance argument while liveness properties require
demonstration of well-foundedness. Here, we adapt the
formal definitions of safety and liveness from Alpern and
Schneider [123]. Kindler [124] provides a complete survey of
historical (and sometimes conflicting) definitions.

Intuition 1. A Safety Property expresses the sentiment that
“something bad never happens.”

In general, safety properties take the form �good, where
good is a temporal logic formula describing a good system
behavior. In other words, the system always stays in some
allowed region of the state space. Recall that LTL properties
are interpreted over computations, which are infinite words
over the alphabet Σ = 2Prop where Prop is the set of atomic
propositions in the formula. Intuitively, “something bad” only
needs to happen once in a computation for the property to be
violated; what happens after that in the infinite computation
does not affect the outcome of the model checking step.
Therefore, if a safety property ϕ is violated, there must
be some finite prefix α = π0, π1, . . . , πi of the computation
π in which this violation occurs. Then, for any infinite
computation β over the alphabet Σ , the concatenation of
computations α · β cannot satisfy ϕ.

Safety properties were first formally defined in [125]. For
property ϕ, infinite computation π = π0, π1, . . . , and alphabet
Σ = 2Prop, we define safety as follows:

(∀π, π ∈ Σω
: π |H ϕ ↔ (∀i,0 ≤ i : (∃β, β ∈ Σω

: π0...i · β |H ϕ))),

where · is the concatenation operator and Σω denotes the set
of infinite words (or ω-words) over Σ .

Restated, ϕ is a safety property satisfied by computation
π if and only if for all lengths of finite prefixes of π, that
finite prefix concatenated with some infinite computation
models ϕ. This is the contrapositive of the statement that
if π |̸H ϕ then there is some finite prefix of π in which
something bad happens that cannot be extended into an
infinite computation that will satisfy ϕ.

We can also define a safety property in terms of language
closure [123]. In Section 3.4 we translate the LTL formula into a
Büchi automaton. The closure of a reduced Büchi automaton
is obtained by making all states accepting states. (A Büchi
automaton is reduced if there is a path to an accepting state
from every state in the automaton; i.e. there are no dead end
“trap” states.) A closure of an automaton representing a safety
property must accept all prefixes of the language defined by
that property.

Lemma 3. A reduced Büchi automaton Aϕ specifies a safety
property ϕ if and only if L (Aϕ) = L (cl(Aϕ)).15

Examples of safety properties include invariance, partial
correctness, mutual exclusion, ordering (i.e. first-come-first-
serve), deadlock freedom, and reachability. Safety properties
are also called invariance properties because they describe

15 Note that Sistla showed that the problem of determining
whether an LTL formula, or the nondeterministic Büchi
automaton representing it, express a safety property is PSPACE-
complete [126].
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predicates that do not change under a set of transformations.
Proving partial correctness of a sequential program provides
assurance that the program never halts with a wrong
answer. Mutual exclusion prohibits the simultaneous use of
a common resource by multiple processes (i.e. two processes
cannot write to the same file at the same time). Ordering
of events, such as first-come-first-served, forbids service out
of the established order. Freedom from deadlock ensures
that the system will never reach a standstill from which
no progress can be made, such as when all processes are
simultaneously locked out of, and waiting on, a common
resource. In a sense, reachability is the dual of safety as it
is an assurance that a certain program state can be reached
(i.e. ¬(�¬good)).

In the case of our air traffic control example, a
safety property we want to check is that no conflict
goes unaddressed. More specifically, whenever a conflict
is detected, TSAFE immediately issues a command to
resolve it. In LTL, we would express this safety property
as �(¬TSAFE_clear → X(TSAFE_command)). Another safety
property we want to check is the absence of conflicting
commands. That is, both TSAFE and the auto-resolver cannot
issue commands to the aircraft at the same time. In LTL, this
is �(¬(AR_command ∧ TSAFE_command)).

Intuition 2. A Liveness Property expresses the sentiment that
“something good must eventually happen.”

Typically, liveness properties express �good, where good
once again is a temporal logic formula describing a good
system behavior. Whereas safety properties reason about
reaching specific states, liveness properties reason about
control flow between states. Liveness is loosely defined as a
program’s ability to execute in a timely manner.

Let Σ f inite be the set of all finite computations over Σ . For
property ϕ, we define liveness as follows:

(∀α, α ∈ Σ f inite
: (∃β, β ∈ Σω

: α · β |H ϕ)),

where · is the concatenation operator.

The formal definition of liveness is basically defined
oppositely from safety. In short, there is no finite prefix over
Σ that cannot be extended into an infinite computation that
satisfies ϕ. Intuitively, this corresponds to the notion that the
“something good” that satisfies the property can still happen
after any finite execution.

As with safety, we can also frame the definition of liveness
in terms of language closure of reduced Büchi automata. If Aϕ
is a reduced Büchi automaton then a computation is not in
cl(Aϕ) if and only if it attempts to traverse a transition that is
not defined in the transition relation δ for Aϕ.16 Furthermore,
since every finite prefix of liveness property ϕ can be extended
into an infinite computation that satisfies ϕ, then the closure
of Aϕ actually accepts all infinite words over the alphabet Σ .

Lemma 4. A reduced Büchi automaton Aϕ specifies a liveness
property ϕ if and only if L (cl(Aϕ)) = Σω.

16 Büchi automata and the transition relation δ are formally
defined in Section 3.4.

Liveness properties are also called eventualities since they
promise that some event will happen, eventually. In other
words, the system will eventually progress through “useful”
states, even if some stuttering is allowed. Termination is
a liveness property; it asserts the program will eventually
halt instead of hanging forever. Other examples of liveness
properties include total correctness, accessibility/absence
of starvation, fairness (also called justice), compassion
(also called strong fairness), and livelock freedom. Total
correctness extends partial correctness with termination; it
states that not only must the program not terminate in a bad
state, the program must terminate in a good state. Starvation
occurs when a process is unable to make progress due to
insufficient access to shared resources; it is assuaged by
assuring regular accessibility to necessary resources. Fairness
guarantees each process the chance to make progress while
compassion extends fairness to include the existence of
sets of cyclically recurring system states. A fair scheduler
executes a process infinitely often while a compassionate
scheduler ensures that a process that is enabled infinitely
often is executed infinitely often. Freedom from livelock
means that the systemwill never reach a live standstill, where
the processes in question cannot make progress yet are not
blocked but thrashing indefinitely. An intuitive example of
livelock occurs when two people try to pass each other in the
hallway yet repeatedly step to the same side of the hallway
in an effort to let the other person pass. Both people are still
walking but they are now oscillating side-to-side instead of
making progress forward.

Common examples of liveness properties include: “every
request will eventually be granted,” “a message will eventu-
ally reach its destination,” and “a process will eventually enter
its critical section.” In the case of our air traffic control exam-
ple, a liveness property to check is that all conflicts are even-
tually resolved: �(¬TSAFE_clear → �TSAFE_clear). We may
also want to check that every request, either from the con-
troller or from the aircraft, is addressed by the system, either
granted or ignored. This adds two more liveness properties to
our specification: �(controller_request → �¬controller_request)
and �(aircraft_request → �¬aircraft_request).

Model checking of safety properties is simpler than
model checking of liveness properties. Due to the temporal
structure of liveness properties, they must be witnessed by
an infinite counterexample in the shape of a lasso. That is,
a counterexample with a finite prefix leading to a bad cycle
that represents an unending run of the system in which
the liveness property is never fulfilled. Safety properties,
on the other hand, are always violated within the finite
prefix, eliminating the need to compute the remainder of
the counterexample corresponding to the loop at the end of
the lasso. Intuitively, a safety property is violated the first
instance the system enters some prohibited state. Though we
provide the full model-checking algorithm for all possible LTL
specifications in Section 5, a simpler check using symbolic
reachability analysis can be used instead to check only safety
properties [122].

With only one exception, safety and liveness properties are
disjoint. The only property that is both a safety and a liveness
property is the property true, which describes all possible
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behaviors, or the words in the set (2Prop)ω.17 The proof of this
statement follows from the definitions of safety and liveness
above, specifically L (true) = L (cl(true)) = Σω. Remarkably,
while every LTL formula is not strictly either a safety or a
liveness property, Alpern and Schneider [127] proved that
every LTL formula is a combination of a safety and a liveness
property.

3.6. Specifying the property as an automaton

Instead of using a temporal logic to describe a behav-
ioral property, we can use an automaton directly. Many
model checkers, like NuSMV and CadenceSMV, will ac-
cept specifications in either format and some, like Lucent’s
FormalCheck [128], deal exclusively with automata inputs.
However, complementing a Büchi automaton is quite difficult
(and likely involves the expensive step of determinization)
whereas complementing an LTL formula can be done in con-
stant time by simply preceeding the formula with a negation
symbol. Currently, the best time complexity for complemen-
tation of Büchi automata is 2O(n logn) [129] but this is still an
open area of research [130–132]. Advantages of this method
include the ability to directly and efficiently construct the
automaton Aϕ rather than relying on an LTL-to-Büchi transla-
tion, while disadvantages include the unintuitiveness of rep-
resenting a behavior specification as an automaton.

3.7. LTL → Symbolic GBA

Given an LTL specification ϕ, the model checker creates a
generalized Büchi automaton A¬ϕ, that recognizes precisely
the executions that do not satisfy ϕ, and is destined
for composition with the model under verification. The
size of A¬ϕ is O(2|ϕ|) in the worse case, which provides
motivation for utilizing a succinct, symbolic representation
instead of explicitly constructing the automaton. Symbolic
model checkers, such as NuSMV [20], CadenceSMV [19], SAL-
SMC [50], and VIS [21], represent and analyze the system
model and specifications symbolically. In the symbolic
representation of automata, states are viewed as truth
assignments to Boolean state variables and the transition
relation is defined as a conjunction of Boolean constraints
on pairs of current and next states [22]. All symbolic model
checkers use the LTL-to-symbolic automaton translation
described in [23], some with minor optimizations. Essentially,
these tools support LTL model checking via the symbolic
translation of LTL to a fair transition system which can be
checked for nonemptiness. Recall that fairness constraints
specify sets of states that must occur infinitely often in any
path. They are necessary to ensure that the subformula ψ

holds in some time step for specifications of the form ξUψ

and �ψ. We enumerate the steps of the standard LTL-to-
symbolic automaton algorithm [23], in detail, below. Bolded
steps are those that produce output that appears in the
symbolic automaton.

Input: An LTL formula f .

17 Note ω was originally defined by Cantor to be the lowest
transfinite ordinal number so (2Prop)ω designates the set of all
infinite words over the alphabet Σ = 2Prop.

1. Negate f and declare the set APf of atomic propositions of
f .

2. Build el_list, the list of elementary formulas in f :

• el(p) = {p} if p ∈ AP.

• el(¬g) = el(g).

• el(g ∨ h) = el(g) ∪ el(h).

• el(g ∧ h) = el(g) ∪ el(h).

• el(Xg) = {Xg} ∪ el(g).

• el(g U h) = {X(g U h)} ∪ el(g) ∪ el(h).

• el(g R h) = {X(g R h)} ∪ el(g) ∪ el(h).

• el(�g) = {X(�g)} ∪ el(g).

• el(�g) = {X(�g)} ∪ el(g).

3. Declare a new variable ELXg for each formula Xg in the
list el_list.

4. Define the function sat(g), which associates each elemen-
tary subformula g of f with each state that satisfies g:

• sat(g) = {q|g ∈ q} where g ∈ el(f),q ∈ Q.

• sat(¬g) = {q|q ∉ sat(g)}.

• sat(g ∨ h) = sat(g) ∪ sat(h).

• sat(g ∧ h) = sat(g) ∩ sat(h).

• sat(g U h) = sat(h) ∪ (sat(g) ∩ sat(X(g U h))).

• sat(g R h) = sat(h) ∩ (sat(g) ∪ sat(X(g R h))).

• sat(�g) = sat(g) ∩ sat(X(�g)).

• sat(�g) = sat(g) ∪ sat(X(�g)).

5. Add fairness constraints to the SMV input model:

{sat(¬(g U h) ∨ h)|g U h occurs in f}.

{sat(¬(� g) ∨ g)|� g occurs in f}.

Note that we do not add a fairness constraint for
subformulas of the form g R h. While R is the dual of U, it
is acceptable if h is true infinitely often and g is never true.

6. Construct the characteristic function Sh of sat(h). For each
subformula h in ¬f :

Sh = p if p is an atomic
proposition.

Sh = ELh if h is elementary formula
Xg in el_list.

Sh =!Sg if h = ¬g
Sh = Sg1|Sg2 if h = g1 ∨ g2
Sh = Sg1&Sg2 if h = g1 ∧ g2
Sh = Sg2|(Sg1&SX(g1 U g2)

) if h = g1 U g2
Sh = Sg2&(Sg1|SX(g1 R g2)

) if h = g1 R g2
Sh = Sg&SX(�g)

if h = �g

Sh = Sg|SX
(�g)

if h = �g

7. For each subformula rooted at an X, define a TRANS

statement of the form:

• TRANS (S_X_g = next(S_g))

8. Print the SMV program. (Since we type code in ASCII
text, the operators � and � are represented in SMV
syntax by their alphabetic character equivalents, G and F ,
respectively.) (See Box III.)

Proof of the correctness of this LTL-to-symbolic-automaton
construction is given in [23].
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Box III.

3.8. Air traffic control example: specifications

Specifications are the temporal logic formulas we supply to a
model checker to describe the desirable behaviors the system
we are checking must have. It is usually helpful to keep in
mind the goal of specifications while writing them. In general,
the purpose of the system model to the model checker is
to answer the question “What does the system do?” The
purpose of the set of specifications is to answer the question
“What should the system do?” We are basically saying to
the model checker, “Here’s how the system works; please
verify that it has the list of emergent behaviors described by
our specification set.” To that end, we design specifications
such that each specification describes a particular desirable
behavior and the entire set of specifications describes a
coherent pattern of behavior.

We have discussed earlier in this section issues relating
to the set of specifications, such as the necessity of checking
that each specification, and the set of specifications as a
whole, are satisfiable and checking that each specification,
and each part of each specification, contributes to the
behavioral description (vacuity checking). Another concern
when authoring a set of specifications is that of coverage,
or ensuring that behaviors across the entire system state
space are described by the set of specifications. There are
several metrics to determine coverage of the model by the
set of specifications but that is a large and active area of
research beyond the scope of this paper. For this example,
we simply check that we have described different types of
behaviors, specifying both safety and liveness conditions, and
adequately utilized the system variables.

We have already written some specifications for our
automated air traffic control architecture in Section 3.5. Here
they are again, as a set:

• Liveness: “Every conflict is addressed”
�(¬TSAFE_clear → �TSAFE_command)
Or, we can choose to specify a stricter version of this
property:

• Safety: “Every conflict is addressed immediately (i.e in one time
step)”
�(¬TSAFE_clear → X(TSAFE_command))

• Safety: “The system will never issue conflicting commands”
�(¬(AR_command ∧ TSAFE_command))

• Liveness: “All conflicts are eventually resolved”
�(¬TSAFE_clear → �TSAFE_clear)

• Liveness: “All controller requests are eventually addressed”
�(controller_request → �¬controller_request)

• Liveness: “All aircraft requests are eventually addressed”
�(aircraft_request → �¬aircraft_request)

We again use the model checker NuSMV to illustrate the
next step in the symbolic model-checking process. We add
our specifications to the end of the file in which we have
specified the system model, each prefaced with the label
LTLSPEC. (See Box IV.)

We will take the first specification in our set, �(¬

TSAFE_clear → �TSAFE_command), as an example of the
processing of specifications under the hood in a symbolic
model checker. Following the steps enumerated in Section 3.7,
NuSMV constructs internally a symbolic automaton that
looks something like the one given in Box V.

4. Representing the combined system and
property using BDDs

The basis for symbolic model checking is the realization
that both the system model and the specification property
can be represented symbolically, using Boolean equations,
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Box IV.

Box V.

rather than explicitly, using automata. Furthermore, they
can be manipulated efficiently using operations over Binary
Decision Diagrams (BDDs). Symbolic representation and
manipulation of the intermediate products of model checking
leads to much more succinct structures needing to be
stored in computer memory, thereby directly combating the
state explosion problem. Certainly there are pathological
constructions of systems that do not benefit substantially
from this space reduction, but symbolic model checking
increases the scalability of model checking for a great many
common systems, especially those with regular structure
such as hardware circuits [53,27].

In this section, we will demonstrate how the automaton
AM,¬ϕ can easily grow to a size that cannot be practically
represented in memory and present the most popular
alternative representation, which uses BDDs to mitigate
this problem. The technique of symbolic model checking was
introduced by McMillan [25] in 1992 specifically as a response
to the state explosion problem. The power of symbolic model
checking derives from using equations describing sets of
states and sets of transitions to implicitly define the state
space, thereby using significantly less memory than explicit
representations that may enumerate the entire state space.
Most symbolic model checkers utilize BDDs to accomplish
this task, though other approaches are possible [133].

Boolean equations of the sort used to describe the
transition systems plied by symbolic model checking are

commonly represented in a variety of ways, such as truth
tables and Binary Decision Trees (BDT), which are exponential
in the size of the formulas they represent.

Definition 8. A Binary Decision Tree (BDT) is a rooted,
directed, acyclic graph (DAG) with vertices labeled by the n
variables of the corresponding Boolean formula. Each variable
node has exactly two children representing the two possible
assignments to that variable, 0 and 1, labeled low and high,
respectively. (Note that, except for the root, each node has
exactly one parent.) A path through the BDT represents a
valuation of the represented function given an assignment
of values to the n variables; it starts at the root, follows the
outgoing edge matching the assignment to the variable in the
current vertex, and terminates in a vertex labeled either 0 or
1, corresponding to the value of the formula for that variable
valuation. The BDT representing a formula over n variables
has 2n

− 1 variable vertices plus 2n terminal vertices in {0,1},
for a total size of 2n+1

− 1 nodes.

A BDD is a refinement of a BDT. While in the worst case,
a BDD is only roughly half the size18 of its equivalent BDT,
usually there is more significant improvement gained by the
following construction.

18 Eliminating duplicate terminal nodes from a BDT of size 2n+1
−

1 with 2n terminal vertices leaves a BDD of size 2n
+ 1 nodes.
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Definition 9. A Binary Decision Diagram (BDD) is a rooted,
directed, acyclic graph (DAG) with internal vertices labeled by
some sufficient subset of the n variables of the corresponding
Boolean formula and exactly two terminal vertices, labeled
0 and 1. Each variable node has exactly two children
representing the two possible assignments to that variable, 0
and 1, labeled low and high, respectively. (Note that, except for
the root, each node may have any number of parents.) A path
through the BDD represents a valuation of the represented
formula given an assignment of values to the n variables;
it starts at the root, follows the outgoing edge matching
the assignment to the variable in the current vertex, and
terminates in the vertex corresponding to the value of the
formula for that variable valuation.

A BDD is considered ordered if it follows a given total order
of variables from root to leaves. Note that not all variables
may appear in the tree or along any path in the tree; a
variable only appears along a path if its value influences
the value of the formula, given the assignments to previous
variables along the path. If we are reasoning over multiple
ordered BDDs (OBDDs), they are presumed to all follow the
same variable ordering. A BDD is reduced if it contains no
vertex v such that low(v) = high(v) and no pair of vertices
v1 and v2 such that the subgraphs rooted by v1 and v2 are
isomorphic. That is, if there is a one-to-one function f such
that for any vertex v′

1 in the subgraph rooted at v1, for some
vertex v′

2 in the subgraph rooted at v2, f(v′

1) = v′

2 implies
that either v′

1 and v′

2 are both terminal vertices with the
same value, or v′

1 and v′

2 are both non-terminal vertices with
the same variable label and the property that f(low(v′

1)) =

low(v′

2) and f(high(v′

1)) = high(v′

2), then either v1 or v2 will
be eliminated. Note that each path realizes a unique set of
variable assignments; each variable valuation corresponds to
exactly one path. Furthermore, every vertex in the graph lies
along at least one path; no part of the graph is unreachable.

In practice, any non-reduced BDD can be easily reduced
by applying two reduction rules. The redundancy elimination
rule removes any non-terminal node v1 where low(v1) =

high(v1) = v2 and connects all incoming edges of v1 directly to
v2 instead. The isomorphism elimination rule removes vertex v1
wherever there exists a vertex v2 such that var(v1) = var(v2),
low(v1) = low(v2), and high(v1) = high(v2) and redirects all
incoming edges of v1 directly to v2. (We use var(v) to denote
the variable labeling vertex v.) Note that v1 and v2 may be
either terminal or non-terminal vertices; this rule eliminates
duplicate terminals as well as isomorphic subgraphs. A non-
reduced BDD can be reduced in a single pass of the tree by
careful application of these two rules in a bottom-up fashion.
An example of reducing a Binary Decision Tree into a BDD
is given in Fig. 9. All three subfigures represent the formula
x1 ∨ x2 ∨ x3 with varying degrees of succinctness as each of
the two reduction rules is applied.

When BDDs are both reduced and ordered (also called
ROBDDs), they have many highly desirable properties. In this
paper, we consider all BDDs to be both reduced and ordered;
the algorithms used for symbolic model checking, and for
efficient BDD manipulation in general, all maintain these
properties. Reduced ordered BDDs are closed under the class
of symbolic operations, as outlined in Section 4.3. These
include APPLY and SATISFY-ONE, which form the basis for the
symbolic model-checking algorithm.

Using BDDs to reason about Boolean formulas represent-
ing the state space offers many advantages over explicit au-
tomata representations:

• Complexity (both time and space): BDDs provide reasonably
small representations for a large class of the most
interesting, and most commonly-encountered, Boolean
functions. For example, all symmetric functions, including
the popular even and odd parity functions, are easily
represented by BDDs where the number of vertices grows
at most with the square of the number of arguments
to the function. Moreover, since our BDDs are reduced
and ordered, they have the property of minimality. This
means if B is a BDD representing a function f , then
for every BDD B′ that also represents f and has the
same variable ordering as B, size(B) ≤ size(B′). Even
better, we can frequently avoid enumerating the entire
state space. Specifically, we can express tasks in several
problem domains entirely in terms of graph algorithms
over BDDs, describe automata in terms of sets of states
and transitions, or use other techniques along those lines
to express only relevant portions of the state space. Since
all of the algorithms used for symbolic analysis of BDDs
have complexities polynomial in the sizes of the input
BDDs, the total computation remains tractable as long as
the sizes of the input BDDs are reasonable. The sum of
these time-and-space advantages allows us to use BDDs
for solving problems that may scale beyond the limits
of more traditional techniques such as case analysis or
combinatorial search.

• Canonicity: There is a unique, canonical BDD representa-
tion for every Boolean function, given a total variable or-
dering. This property yields very simple algorithms for the
most common BDD operations. Testing BDDs for equiv-
alence just involves testing whether their graphs match
exactly. Testing for satisfiability reduces to comparing the
BDD graph to that of the constant function 0. Similarly, a
function is a tautology iff its BDD is the constant function
1. Testing whether a function is independent of a variable
x involves a simple check of whether its BDD contains any
vertices labeled by x. Note that this is an important ad-
vantage over explicit automata representations since there
is no canonical automaton representation for any class of
automata.

• Efficiency: Besides the benefits that directly follow from
canonicity, BDD representation enables efficient
algorithms for many basic operations, including intersec-
tion, complementation, comparison, subtraction, projec-
tion, and testing for implication. The time complexity of
any single operation is bounded by the product of the
graph sizes of the functions being operated on or, for
single-BDD operations like complementation, proportional
to the size of the single function graph. In other words, the
performance of directly manipulating BDDs in a sequence
of operations degrades slowly, if at all.

• Simplicity: The BDD data structure and the set of
algorithms for manipulating BDDs are conceptually and
implementationally simple.

• Generality: BDDs can be used for reasoning about all kinds
of finite systems, basically any problem that can be stated
in terms of Boolean functions. They are not tied to any
particular family of automata; they are just as useful
for LTL symbolic model checking as they are for the
extensions of LTL described in Section 3.2.4, for example.



C O M P U T E R S C I E N C E R E V I E W ( ) – 23

The notion of using Binary Decision Diagrams to reason
about Boolean functions was first introduced by Lee in
1959 [134] and later popularized by Akers who evinced the
utility of BDDs for reasoning about large digital systems [135].
Fortune, Hopcroft, and Schmidt [136] restricted the ordering of
the decision variables in the vertices of the graph, creating the
canonical form of Ordered Binary Decision Diagrams (OBDDs)
(though they called them B-schemes), noting the significance
of variable ordering on graph size, and showing the ease
of testing for functional equivalence. Bryant, who coined
the term OBDDs, ameliorated ordered BDDs to symbolic
analysis by demonstrating efficient algorithms for combining
two functions with a binary operation and composing two
functions [137,138].

4.1. Combining the system and property representations

We directly construct the product, AM,¬ϕ, of the system
model automaton M and the automaton representing the
complemented specification A¬ϕ. This construction logically
follows from the realization that the product of these
two automata constitutes the intersection of the languages
L (M) and L (A¬ϕ) [139]. Recall from Section 3.2.4 that
Büchi automata are automata that accept exactly the
class of ω-regular languages. Furthermore, the class of ω-
regular languages corresponds exactly to the languages
that can be described by ω-regular expressions and is
closed under the operations of union, intersection, and
complementation [140]. Therefore, we can construct a Büchi
automaton AM,¬ϕ such that L (AM, ¬ϕ) = L (M)∩L (A¬ϕ) since
L (AM, ¬ϕ) is an ω-regular language.

Intuitively, AM,¬ϕ simulates running the two multiplicand
automata in parallel, also called the synchronous parallel
composition of M and A¬ϕ. Executing these two automata
simultaneously allows us to use A¬ϕ to continuously monitor
the behavior of M and judge whether M satisfies the desired
property ϕ at all times.19

The states of AM,¬ϕ are pairs of states, one each from M
and A¬ϕ, plus a track label t ∈ {0,1}. (For simplicity, we call a
state in MqM and a state in A¬ϕqϕ.) A run of AM,¬ϕ starts in
the pair of the two start states in track 0: (q0M,q0ϕ,0). Upon
reading a character σ ∈ Σ , AM,¬ϕ transitions from the current
state, q = (qM,qϕ, t), to a next state, q′

= (q′

M,q
′
ϕ, t), wherever

M transitions from the M-component of q, qM, to the M-
component of q′, q′

M, upon reading σ and A¬ϕ also transitions
from its associated component, qϕ, to q′

ϕ upon reading σ. The
value of t remains the same unless either t = 0 and qM ∈ FM
or t = 1 and qϕ ∈ Fϕ, in which case the t-bit flips. In essence,
the two tracks ensure AM,¬ϕ starts in track 0, passes through
a final state in M, switches to track 1, passes through a final
state in A¬ϕ, switches back to track 0, and repeats the pattern.
We assign the set of final states in AM,¬ϕ to essentially match
those of M since the path of any run only returns to track 0 if it
has previously passed through an accepting state of M in track

19 Systems can also be composed asynchronously, where δ is
defined such that it is possible for either M or ϕ to progress
while the other does not transition and the values of any system
variable specific to the non-transitioning system are preserved.
However, this type of composition does not further the model-
checking algorithm presented here.

0 and an accepting state of A¬ϕ in track 1. Since the accepting
condition for a Büchi automaton necessitates visiting the set
of final states infinitely often, visiting infinitely often a state
whose M-component is in FM while in track 0 suffices. This
construction is necessarily more complex than the straight
Cartesian product [139] of the two automata, M × A¬ϕ, since we
must allow for runs that pass infinitely often through final
states in both M and A¬ϕ, but not necessarily at the same
time. (For an illustrative example, see [110].) Note that since
q0ϕ is defined as the state(s) labeled by ¬ϕ, the initial state(s)
our product automaton, AM, ¬ϕ must also be labeled by ¬ϕ.

We presume that the alphabets of both automata are
the same, a reasonable assumption considering that the
formula ¬ϕ describes a behavior of the system M. However,
our construction is unchanged by defining the alphabet Σ of
AM,¬ϕ to be the union of the alphabets of M and A¬ϕ if those
alphabets differ.

Formally, we define AM,¬ϕ as follows.

Definition 10. Let M = (QM,Σ , δM,q0M, FM) and A¬ϕ =

(Qϕ,Σ , δϕ,q0ϕ, Fϕ). The intersection automaton AM,¬ϕ with
the property that L (AM,¬ϕ) = L (M) ∩ L (A¬ϕ) is the automa-

ton defined by the quintuple AM,¬ϕ = (Q̂,Σ , δ̂, (q0M,q0ϕ,0), F̂)
where:

• State set Q̂ = QM ×Qϕ×{0,1} consists of triples (qiM,qjϕ
, t).

• Σ is the shared alphabet.
• Transition relation δ̂ is defined such that AM,¬ϕ is in state
(qiM,qjϕ

, t) whenever M is in state qiM and A¬ϕ is in state

qjϕ
. For any σ ∈ Σ ,

δ̂((qiM,qjϕ
, t), σ) = (qkM,qlϕ, t),

whenever
δM(qiM, σ) = qkM

and
δϕ(qjϕ

, σ) = qlϕ

unless
t = 0 and qiM ∈ FM,

or
t = 1 and qjϕ

∈ Fϕ

in which case
δ̂((qiM,qjϕ

, t), σ) = (qkM,qlϕ, t).

• The initial state is (q0M,q0ϕ,0).

• The set of final states F̂ is the set of all states (qiM,qjϕ
,0)

such that qiM ∈ FM and qjϕ
∈ Qϕ.

Theorem 5. Büchi automata are closed under complementation.

Let A = (Q,Σ , δ,q0, F) be a Büchi automaton that accepts
the language L. The construction of the Büchi automaton A
that accepts the complement language L is rather involved.
It does not suffice to simply complement the accepting set
F (i.e. let A′

= (Q,Σ , δ,q0,Q − F)) because a run not passing
through any state in F infinitely often is different from a
run passing through some state in Q − F infinitely often. For
example, an accepting run of A on the word w might pass
through both states in F and in Q − F infinitely often, so both
A and A′ would accept w. Thus, L (A′) ≠ Σω

− L (A). The
complex construction proving Theorem 5 is given in [108],
which yields a doubly exponential construction for A and
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in [83], which reduces the construction to singly exponential
with a quadratic exponent. Specifically, for Büchi automaton
A, over the alphabet Σ , there is a Büchi automaton A with
2O(|Q| log |Q|) states such that L (A) = Σω

− L (A) [129]. Michel
proved that this is an optimal bound [141].

As an important aside, since Büchi automata are not
closed under determinization and nondeterministic Büchi
automata are more expressive than deterministic Büchi
automata, the complement automaton A produced by these
algorithms for some deterministic Büchi automaton A
may be a nondeterministic Büchi automaton that cannot
be determinized. Efficient methods for constructing and
reasoning about complemented Büchi automata remain
an area of interest. For example, we can check A
for nonuniversality (i.e. L (A) ≠ Σω) in polynomial
space by constructing A on the fly and checking for
nonemptiness [110].

Theorem 6. L (AM,¬ϕ) is an ω-regular language and AM,¬ϕ is a
Büchi automaton.

Proof of Theorem 6. Recall that LM = L (M) is an ω-regular
language since it is the language accepted by a Büchi
automaton and that Lϕ = L (A¬ϕ) is also an ω-regular
language since ¬ϕ is an LTL formula, which describes a
(∗-free) ω-regular expression. We know that L (AM,¬ϕ) = LM ∩

Lϕ is an ω-regular language, and, therefore, that AM,¬ϕ is
a Büchi automaton because ω-regular languages are closed
under intersection. First, we offer proof of closure under
union; closure under intersection follows from closure under
union and complementation.

By definition of ω-regular languages, there exist ω-regular
expressions rM and rϕ that describe the languages LM and Lϕ,
respectively. That is, LM = L (rM) and Lϕ = L (rϕ). By definition
of ω-regular expressions, rM + rϕ is an ω-regular expression
denoting the language LM ∪ Lϕ, which demonstrates closure
under union.

Closure under intersection now follows from DeMorgan’s
Law:

LM ∩ Lϕ = LM ∪ Lϕ.

By closure under complementation, LM and Lϕ are both ω-
regular languages. By closure under union, LM ∪ Lϕ is an ω-
regular language. Again by closure under complementation,

LM ∪ Lϕ = LM ∩ Lϕ

is an ω-regular language. By definition of ω-regular languages,
it follows that AM,¬ϕ is a Büchi automaton. �

Theorem 7. Let LM = L (M) and Lϕ = L (A¬ϕ). Given an infinite
word w = w0,w1,w2, . . . ∈ Σ , w ∈ LM ∩ Lϕ if and only if it is
accepted by AM,¬ϕ.

Proof of Theorem 7.

If-direction: w ∈ LM ∩ Lϕ → w is accepted by AM,¬ϕ.
An infinite word w is in the language LM ∩ Lϕ if w ∈ LM and

w ∈ Lϕ. By definition, w ∈ LM iff w represents an accepting
execution of the Büchi automaton M. Symmetrically, w ∈ Lϕ
iff w is accepted by the automaton A¬ϕ corresponding to the
LTL formula ¬ϕ. Then we know that δωM(q0M,w) transitions
through some final state qiM ∈ FM infinitely often and that
δωϕ (q0ϕ,w) similarly transitions through some accepting state

qjϕ
∈ Fϕ infinitely often. By definition of δ̂, AM,¬ϕ is in state

(qiM,qjϕ
) exclusively when M is in state qiM and A¬ϕ is in state

qjϕ
upon reading the same word. That is, for any w,

δ̂ω((qiM,qjϕ
),w) = (qkM,qlϕ),

whenever
δωM(qiM,w) = qkM

and
δωϕ (qjϕ

,w) = qlϕ.

Since whenever qiM ∈ FM and qjϕ
∈ Fϕ, (qiM,qjϕ

) ∈ F̂, w is

accepted by AM,¬ϕ.

Only-if direction: w is accepted by AM,¬ϕ → w ∈ LM ∩ Lϕ.
By definition, an infinite word w is accepted by AM,¬ϕ

if the run over w in AM,¬ϕ visits at least one state in F
infinitely often. That is, δ̂ω((q0M,q0ϕ),w) transitions infinitely

often through some state (qiM,qjϕ
) ∈ F̂. By construction,

for any w, δ̂ω((q0M,q0ϕ),w) = (δωM(q0M,w), δ
ω
ϕ (q0ϕ,w)). By

definition of F̂, (qiM,qjϕ
) iff qiM ∈ FM and qjϕ

∈ Fϕ. Therefore,

δωM(q0M,w) transitions through qiM ∈ FM infinitely often and
w ∈ LM. Symmetrically, δωϕ (q0ϕ,w) transitions through qjϕ

∈ Fϕ
infinitely often and w ∈ Lϕ. Ergo, w ∈ LM ∩ Lϕ. �

The product automaton AM,¬ϕ has size O(|M| × |A¬ϕ|) in
the worst case. (Though the product can be much smaller;
in the best case, it has size 0 [8].) Due to this size blow-
up, representing the automaton as succinctly as possible
becomes vital to palliate the state explosion problem and
ensure AM,¬ϕ can be stored in computer memory. It is easy
to see that even small differences in the sizes of both M and
A¬ϕ can have a significant impact on our ability to store, and
to reason about, AM,¬ϕ. We must choose a representation of
AM,¬ϕ that minimizes the storage memory requirement while
maximizing the efficiency of the nonemptiness check. We
accomplish this task by representing AM,¬ϕ using BDDs.

4.2. Representing automata using BDDs

Recall that AM,¬ϕ is a Büchi Automaton with finite set of
states Q, defined by assignments to the variables in the
alphabet Σ , and transition relation δ : Q × Σ → Q. We
consider state qi ∈ Q as a tuple


qi, σ0, σ1, . . .


containing the

name of the state and the assignments to each of the system
variables, in order, in that state. In this paper, we presume
that the set of system variables consists of Boolean-valued
atomic propositions, which can each be represented by a
single bit. However, this representation is easily extended
to other data types by utilizing more bits to represent each
system variable. For example, an integer variable with a range
of [0,255] would be represented using 8 bits. (Unbounded
variables cannot be encoded in this fashion as they cause the
representation of AM,¬ϕ to have an infinite number of states
and thereby to be immune to the model-checking algorithm
presented here. Infinite state model checking requires the
use of alternative techniques, e.g. [142]). Choosing a Boolean
encoding for an automaton is a bit of an art; there are several
encoding variations to choose from. When reasoning about a
single automaton, for instance, there may be an advantage
to encoding the state numbers in the representation along
with the values of the variables in each state. In our air
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traffic control example, we have 7 states and thus need 4
bits to represent this range of state labels. The Boolean tuple
representation of State 6, where all 5 system variables are
false, would be ⟨011000000⟩. (The first 4 bits are the binary
representation of the label 6 and the last 5 bits give the 5 false
values of the system variables.) In practice, the state label is
optional and can be included or not in the Boolean tuple for
optimization purposes. This sort of encoding with state labels
is not advantageous when reasoning about combinations of
automata, as in symbolic model checking, as the state labels
becomemeaningless. Also, we would rather avoid this kind of
explicit enumeration of the states in the BDD representation
since this does not offer a space-saving advantage over
explicit-state model checking.

We represent symbolic automata using BDDs by encod-
ing the transition relations directly. Basically, a transition
is a pair of states: an origin state and a terminal state.
A simple way to represent a transition from state qi to

state qi+1 is via the tuple

qi,qi1


, which is encoded using

twice the number of bits as a single state. For instance,
the transition from State 6 to State 7 in our air traffic
control example automaton, presuming the variable order-
ing {AR_command,TSAFE_command, controller_request,aircraft_
request,TSAFE_clear}, would be ⟨0000001000⟩. (The first 5 bits
give the 5 false values of the system variables in State 6; the
next 5 bits represent the values of the system variables in
State 7, with the value of TSAFE_command changed to True.)

Our BDD is constructed using 2|Σ | variables: two copies
of each variable represent its value in the originating state
and in the target state. The variables σ1, σ2, . . . , σn represent
the values of the atomic propositions in the current state and
the primed variables σ′

1, σ
′

2, . . . , σ
′
n represent the values of the

atomic propositions in the next state. Finding an optimal BDD
variable ordering is NP-complete and, for any constant c > 1,
it is NP-hard to compute a variable ordering to make a BDD
at most c times larger than optimal [169]. Though finding an
optimal variable ordering is a tall order, a good rule of thumb
is to group the most closely-related variables together in the
ordering and some order involving interleaving the current
and next time variants of the variable set together (as in
σ1, σ

′

1, σ2, σ
′

2, . . . , σn, σ
′
n) has been shown to have some nice

advantages for model checking [72].

Alternative encodings include breaking a larger BDD
representation into combinations of smaller BDDs to take
advantage of natural logical separations and minimize the
size of intermediate constructions [138]. Variations on the
basic BDD structure can also be helpful. For example,
shared BDDs, or BDDs with multiple root nodes, one for
each function represented, save memory by overlapping
BDD representations and adding a pair of hash tables for
bookkeeping [143]. Oppositely, BDDs with expanded sets
of terminal nodes (i.e. terminals other than 0 and 1),
such as Multi-Terminal BDDs, offer unique advantages,
especially for extensions of model checking that deal with
uncertainty [144,145]. Examiningmemory-saving refinements
on the basic BDD structure that sustain or enhance the
efficient manipulation of automata by reasoning over sets of
states and sets of transitions is an ongoing area of research.

4.2.1. The impact of variable ordering
The first decision we make when forming a BDD is the
variable ordering. This is also the most important decision
since the size of the graph representing any particular
function may be highly sensitive to the chosen variable
ordering. Many common functions, such as integer addition,
have BDD representations that are linear for the best variable
orderings and exponential for the worst. Unfortunately,
computing an optimal ordering is an NP-complete problem.
Even if we take the time to compute the optimal ordering,
not all functions have reasonably-sized representations. For
some systems, even a reasonably-sized BDD representation is
too large to reason about practically, and for others, the BDD
representation will grow exponentially with the size of the
input function regardless of variable ordering [137]. Therefore,
the best course we can take is to utilize a set of comparatively
simple heuristics to choose an adequate ordering, avoiding
orderings that would cause the BDD to grow exponentially
whenever possible. A classic example of a function with both
linear and exponential BDD representations, depending on
variable ordering, is displayed in Fig. 10.

4.3. BDD operations

We introduce the algorithms underlying the symbolic model-
checking procedure, as defined by Bryant [137] and reviewed
by Andersen [146]. The full model-checking algorithm
presented in Section 5 builds upon these basic operations.

If ϕ is purely propositional (i.e. contains no temporal
operators) then we can easily construct a (reduced) BDD
directly from ¬ϕ using a straightforward algorithm like BUILD,
which simply loops through the variable ordering, recursively
constructing each variable’s low and high subtrees20 [146].
(See Box VI.) Otherwise, we translate ¬ϕ into a symbolic
automaton and then encode the result, A¬ϕ as a BDD, as
described in Section 4.2.

Once we have built BDDs representing each of M and
A¬ϕ, we need to compute their product, as described
in Section 4.1. Let ΣBDD be the set of BDD variables
encoding Σ . The application of all binary operators over
BDDs, including conjunction, disjunction, union, intersection,
complementation (via xor with 1), and testing for implication,
is implemented in a streamlined fashion utilizing a singular
universal function. (See Box VII.) APPLY takes as input a binary
operator and BDDs representing two functions f1 and f2, both
over the alphabet Σ = (σ1, . . . , σn) and produces a reduced
graph representing the function f1 < op > f2 defined as:

[f1 < op > f2](σ1, . . . , σn) = f1(σ1, . . . , σn) < op > f2(σ1, . . . , σn).

APPLY begins by comparing the root vertices of the two
BDDs and proceeds downward. There are four cases. If
vertices v1 and v2 are both terminal vertices, the result
is simply the terminal vertex representing the result of
value(v1) < op > value(v2). If the variable labels of v1 and
v2 are the same, we create a vertex in the result BDD with
that variable label and operate on the pair of low subtrees,
low(v1) and low(v2), and the pair of high subtrees, high(v1)

20 Unfortunately, this simple algorithm requires exponential (2n)
time.



26 C O M P U T E R S C I E N C E R E V I E W ( ) –

Box VI.

Box VII.

and high(v2), to create the low and high subtrees of our new
vertex, respectively. Otherwise, one of the variables, var(v1)
or var(v2) is before the other in the total variable ordering.
Note that this later vertex may or may not be a terminal
vertex; either way, the algorithm is the same. If v1 is the
earlier vertex, then the function represented by the subtree
with root v2 is independent of the variable var(v1). (If this
were not true, we would encounter the variable in both
graphs.) In this case, we create a vertex in the result BDD
labeled var(v1) and recur on the pair of subtrees {low(v1),v2}

to construct this new node’s low subtree and on the pair
of subtrees {high(v1),v2} to construct this new node’s high
subtree. The last case, where var(v2) occurs before var(v1)
in the total variable ordering, is symmetric. We presume

new_vertex() is some function that creates a new vertex iff no
isometric vertex exists, thus maintaining the reduced nature
of the BDD under construction. Bryant [137] and Wegener
and Sieling [147] describe implementation optimizations that
yield a time complexity for this algorithm ofO(|G1||G2|)where
|G1| and |G2| are the sizes of the two graphs being operated
upon.

Recall that finding a counterexample trace equates to
finding a word in the language L (AM,¬ϕ), which is essentially
a satisfying assignment to the variables in Σ through time.
The model checker uses a BDD-based fixpoint algorithm to
find a fair path in the model-automaton product [24]. The
basic algorithm underlying this process is Bryant’s SATISFY-
ONE [137]. (See Box VII.) This algorithm is a simple recognition
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Box VIII.

of the BDD principle that every non-terminal vertex has the
terminal vertex labeled 1 as a descendant. Thus, a classic
depth-first search with backtracking upon visiting the 0
terminal is guaranteed to find a satisfying path from the
root to the terminal 1 in linear time21. Starting from the
root, SATISFY-ONE arbitrarily guesses the low branch of each
non-terminal vertex first, and stores a satisfying assignment
(aka counterexample trace) of length n = |ΣBDD|, in an array
as it traverses the graph. It returns false if the function is
unsatisfiable, and true otherwise. (See Box VIII.)

Note that the reason we check for the existence of a single
satisfying set and not for the whole set SM,¬ϕ of satisfying
sets is because enumerating the entire set requires time
proportional to the length of the counterexamples times the
number of elements in SM,¬ϕ. (For a propositional formula
with n = |ΣBDD|, the time complexity is O(n · |SM,¬ϕ|).)
Considering the counterexample traces may be quite lengthy
(i.e. n may be large), and there may be many of them, this
is a highly inefficient check, unlikely to be performed in any
reasonable timeframe. Furthermore, the utility of performing
such a check is questionable: a single bug may generate
any number of counterexamples. For verification purposes,
where counterexamples may trace through many time steps,
it is much more efficient to use the model checker to find
a bug, then fix that bug before searching for additional
counterexamples.

By changing the domain of the model-checking problem to
reasoning over BDD operations from explicit manipulations of
automata, we increase the size of the system we can reason
about. Combining concepts from Boolean algebra and graph
theory allows us to achieve such a high level of algorithmic
efficiency that the performance of symbolic model checking
using these techniques is limited mostly by the sizes of the
BDDs involved. Table 3 compares the two methods for each
step in the model-checking problem.

4.4. Air traffic control example: a BDD

We now revisit our example of the automated airspace
concept for air traffic control. Using the methods presented
in Section 4.2 for encoding automata as BDDs, and ordering
the variables as we presented them, we arrive at the BDD
representation of the automaton introduced in Section 2.2,
displayed in Fig. 11.

21 One of the reasons maintaining a reduced BDD is important is
that this algorithm can require exponential time if not [137].

The variable ordering used in Fig. 11 is {AR_command,

AR_command’, TSAFE_command, TSAFE_command’, controller_

request, controller_request’, aircraft_request, aircraft_

request’, TSAFE_clear, TSAFE_clear’}. Note that this vari-
able ordering was chosen for our example to be easy to read,
not to be optimal. Nevertheless, the binary decision tree for
this ten-variablemodel would have 2n+1

−1 = 210+1
−1 = 2047

total nodes while the BDD we picture here has only 47. Note
also that this BDD is easily constructed from either of the
NuSMV models we presented in Section 2.2, Boxes I and II,
since it simply encodes the changes in variables that are pos-
sible in a single time step.

Returning to our example liveness specification, we
want to check that whenever a near-term conflict is
detected (i.e. whenever TSAFE_clear is false) that the conflict
is addressed (i.e. a correcting command from TSAFE is
issued). In order to do that, we check the LTL formula
�(¬TSAFE_clear → �TSAFE_command).

In Section 3.8, Box V, we saw the symbolic automaton
created by the model checker for this formula. In Fig. 12,
we present the BDD representation of that symbolic au-
tomaton, which encodes the current and next-time ver-
sions of the four variables and the transition relation in
that representation. Note in particular how small this col-
lection of Boolean variables and pointers is in comparison
to what we would need to store to explicitly enumerate all
states of the automaton. This is an example of the concept
of reasoning about states and transitions more succinctly,
as sets of states and sets of transitions. We need only a
few of the system variables for this representation, though
the paths through this BDD encode sets of states where
the values of the system variables not present in the BDD
vary. We use the variable ordering of Fig. 11 with the cur-
rent and next-time versions of the specification’s elemen-
tary variables EL_X_G__TSAFE_clear_OR_F_TSAFE_command and
EL_X_F_TSAFE_command tacked onto the end, which will allow
us to combine these BDDs for the model checking step.

5. Checking for counterexamples

We construct the automaton AM,¬ϕ as the composition
of the system automaton M, and the automaton for the
complimented LTL specification A¬ϕ. The model checking
question, “does M,q0 |H ϕ,” then reduces to asking “is the
language L (AM,¬ϕ) empty?” The follow-up to this question
is “if not, what word(s) does AM,¬ϕ accept?” Any such word
represents a computation of M that violates ϕ, constituting a
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Table 3 – Table comparing explicit and symbolic model-checking algorithms. Recall that el(¬ϕ) is the set of elementary
formulas of ϕ as defined in Section 3.7. We presume the ROBDDs for M and ¬ϕ are created using the appropriate variants
of the BUILD algorithm [146]. The ROBDD for AM,¬ϕ is created by an extension of the algorithm APPLY(∧, ROBDDM,
ROBDD¬ϕ) [146], implementing the dynamic programming optimizations that result in lower time-complexities. Finally,
the algorithm used for finding a counterexample given an ROBDD is based on ANYSAT [146]. Note that, for both explicit
and symbolic model checking, multiple steps below are performed at once, using on-the-fly techniques, which increases
the efficiency of the process and may avoid constructing all of AM,¬ϕ. We separate out the steps here for simplicity only.

Operation Explicit method Time
complexity

Symbolic method Time complexity

Translate M from a
higher-level language

Construct a Büchi
automaton

Depends on
M

Construct an ROBDD O(2|Σ×Σ |)

Translate ϕ from LTL
to A¬ϕ

Construct a Büchi
automaton

2O(|ϕ|) Construct an ROBDD O(2|el(¬ϕ)|)

Create AM,¬ϕ Construct automaton for
L (M) ∩ L (A¬ϕ)

O(|M| ×

|A¬ϕ|)

Compute (ROBDDM ∧ ROBDD¬ϕ) O(|ROBDDM||ROBDD¬ϕ|) =

O(2|Σ×Σ |2|el(¬ϕ)|)

Check AM,¬ϕ for
nonemptiness

Search for an accepting
path via iterative
depth-first search of the
strongly connected
components

O(|AM,¬ϕ|) Compute the fixpoint of the
combined BDD with the spec
E� true

O(|BDDrepresentation|)a

Construct a
counterexample

Compute an accepting
cycle through the SCC
graph

O(|trace|) Find a path leading to the terminal
node 1 by a depth-first traversal of
ROBDDM,¬ϕ

Linear in the length of the
counterexample found:
O(|trace|)

aHere, the time complexity depends upon the size of the symbolic (BDD) representation in terms of the distances between states in the
automaton graph, the number and arrangement of the strongly connected components in this graph, and the number of fairness conditions
asserted.

counterexample to the check M,q0 |H ϕ and providing a valuable
debugging tool for locating the bug. Thus, in practice, the
model-checking step is performed in two parts: an emptiness
check on the language L (AM,¬ϕ) and the construction of the
(preferably shortest) counterexample witness if L (AM,¬ϕ) ≠

∅.
The earliest complete symbolic model-checking algorithm

was designed in 1992 by Burch, Clarke, McMillan, Dill, and
Hwang to take advantage of regularity in the state graph
of the system and utilize the intuitive complexity of the
state space rather than the explicit size of the space [22].
We present an updated algorithm here, better suited to
symbolic LTL model checking specifically [148], which takes
full advantage of our automata-theoretic approach, allowing
very naturally for extensions to the basic algorithm [5].
An issue with using the original symbolic model checking
algorithm, and later variants thereof, for LTL model checking
is that they operated via a translation to the type of fair
transition system also used for CTL model checking with
fairness constraints [23], which itself involved a conversion
to the mu-calculus [22,149]. This method is indirect, complex,
and does not account for the full expressibility of LTL
such as full fairness, also called strong fairness or compassion.
Recall from Section 3.5 that compassion extends justice
to include the existence of sets of cyclically recurring
system states. Compassion can be particularly useful when
specifying special types of coordination, such as semaphores
or synchronous communication protocols. In Section 3.5 we
showed that compassion requirements can be included via
specifications. We can also include compassion natively in
the system model.

The classical automata-theoretic approach to model
checking using justice corresponds to reasoning over
generalized Büchi automata whereas adding compassion

extends this to reasoning over Streett automata [150]. Streett
automata are essentially the same as Büchi automata but
with more general acceptance conditions, enabling the direct
encoding of stronger notions of fairness [112]. Instead of
specifying F, the set of final states that must be visited
infinitely often in Büchi acceptance, Streett acceptance takes
the form of a set of pairs of sets of states, (Li,Ui) such that if a
run visits a state in Li infinitely often, it must also visit a state
in Ui infinitely often [112]. The pairs of sets of states in Streett
acceptance conditions correspond nicely to the definition of
generalized fairness [151]. Of course, since Street automata
are expressively equivalent to Büchi automata and there is
a straightforward conversion between the two [112], adding
compassion at the algorithmic level does not substantially
change our nonemptiness check [5].

Recall from Fig. 8 that a counterexample witness takes
the shape of a lasso: a finite prefix starting from the initial
state, q0, and leading to an accepting cycle of the automaton
AM,¬ϕ. For LTL model checking, fairness requirements are
captured by the automata acceptance conditions, so each
justice requirement and compassion requirement constitutes
an additional acceptance condition. The challenge, then, is
to find a reachable fair cycle, or a cycle that passes through
at least one state satisfying each acceptance condition. Such
a cycle is often referred to as a ‘bad cycle’ because it is a
cycle on which all acceptance conditions are satisfied yet our
specification, ϕ, is violated, which is certainly an undesirable
outcome considering our goal is to prove that the system M
never violates ϕ. We return as the counterexample, the list of
states comprising the finite stem from q0 to some state in this
fair cycle, followed by a listing of the states visited in the cycle.
See Section 5.4 for a counterexample returned from NuSMV
for our air traffic control example.

We want to find the shortest counterexample because that
facilitates debugging and, in some cases, returning a shorter
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Fig. 8 – A counterexample trace takes the form of an accepting lasso. Again, the start state is designated by an incoming,
unlabeled arrow not originating at any vertex. Here, F1 . . . F4 represent final states satisfying four acceptance conditions.

(a) Binary Decision Tree. (b) Isomorphism
elimination rule.

(c) Redundancy
elimination rule.

Fig. 9 – Conversion of a Binary Decision Tree for x1 ∨ x2 ∨ x3 into a Binary Decision Diagram.

(a) Variable order = {x1, x2, x3, y1, y2, y3}. (b) Variable order = {x1, y1, x2, y2, x3, y3}.

Fig. 10 – BDDs for the function (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3).

counterexample can save time and memory. However, this
step in the model-checking process needs to be fast and
finding the shortest counterexample is NP-complete [152], so
we depend instead on reliable heuristics to efficiently find
a (hopefully) short counterexample quickly.22 Furthermore,
we want to construct this counterexample directly from our
symbolic automaton, AM,¬ϕ for maximum efficiency. For this
reason, there has been a concentration on finding efficient
symbolic cycle-detection algorithms. The first such effort, by
Emerson and Lei [24], produced an algorithm that operates
in quadratic time due to the presence of a doubly-nested
fixpoint operator, but is still a standard to which all later
algorithms are compared. All of these algorithms perform

22 For an algorithm that always returns the shortest counterex-
ample, see [153].

some iterative computation over the reachable states in the
automaton AM,¬ϕ to find paths to fair cycles. In order to
accomplish this, it is necessary for us to treat this automaton
as a graph and employ some classic techniques from graph
theory.

5.1. Automata as graphs

Formally, a predicate over the set of states Q is any subset
P ⊆ Q. A binary relation over Q is any set of pairs R ⊆ Q × Q
such that, for predicates P1 and P2:

P1 × P2 = {(q1,q2) ∈ Q2
|q1 ∈ P1,q2 ∈ P2}.

Recall that a Büchi automaton can be viewed as a special
case of a directed graph G = (V,E) where V is the finite set
of vertices, or the states of the automaton such that V = Q,
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Fig. 11 – BDD representing the automaton in Fig. 1.

Fig. 12 – BDD representing the symbolic automaton in Section 3.8, Box V, for the formula
�(¬TSAFE_clear → �TSAFE_command). (The variable EL_X_G__TSAFE_clear_OR_F_TSAFE_command is abbreviated EL_X_G_....)

and E ⊆ V × V is the set of edges, or the binary relation
encapsulating the transitions of the automaton such that
(q,q′) ∈ E whenever δ(q, σ) = q′ for two states q and q′ and
any alphabet character σ ∈ Σ . A path through the graph
that corresponds to a computation of the automaton, from
some state qj to state qk is a sequence ⟨qj,qj+1,qj+2, . . .qk⟩ of
vertices such that (qi−1,qi) ∈ E for i = j + 1, j + 2, . . . , k. Along
such a path, we call vertex qi−1 a predecessor of state qi and
vertex qi+1 a successor of qi. Note that a path must contain
at least one edge but the presence of self-loops means that
a state can be its own predecessor or successor. If there is a
path from qj to qk, we say that qk is reachable from qj or that
qj ❀ qk. Let R represent the binary relation corresponding

to the transition relation δ of AM,¬ϕ. We can extend this
relationship for a predicate P and the relation R using pre-
and post-composition as follows:

R ◦ P = {q ∈ Q|(q,q′) ∈ R for some q′
∈ P},

P ◦ R = {q ∈ Q|(q̂,q) ∈ R for q̂ ∈ P}.

In other words, R ◦ P is the set of all predecessors of states
in the set P. Conversely, P ◦ R is the set of all successors of
states in the set P, or the set of all states reachable in a single
transition from P in the graph of AM,¬ϕ, which we call GAM,¬ϕ .
We can employ the ∗-operator to define R∗

◦ P, the set of
all states that can reach a P-state within a finite number (0
or more) steps. Similarly, we designate the set of all states
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reachable in a finite number of steps from a P-state as P ◦ R∗.
Expanded, we have:

R∗
◦ P = P ∪ R ◦ P ∪ R ◦ (R ◦ P) ∪ R ◦ (R ◦ (R ◦ P)) ∪ · · · ,

P ◦ R∗
= P ∪ P ◦ R ∪ (P ◦ R) ◦ R ∪ ((P ◦ R) ◦ R) ◦ R ∪ · · · .

Since AM,¬ϕ is finite, it is clear that both R∗
◦ P and P ◦ R∗

converge in a finite number of steps. Because P◦R∗ consists of
the set {q′

∈ Q|q ❀ q′
}, it is also called the forward set of state

q. In the same vein, R∗
◦P comprises the backward set of state q

or {q̂ ∈ Q|q̂ ❀ q}. We define the diameter d of a graph to be the
length of the longest minimal path between any two states
(qj,qk) ∈ G such that qj ❀ qk. In other words, for all pairs of
connected vertices (qj,qk) ∈ G, setting the distance from qj
to qk to the smallest number of states on any path between
them, d is the longest such distance in G.

A connected component, is a maximal connected subgraph
such that two vertices are in the same connected component
if and only if there is some path between them. Meanwhile,
a strongly connected component (SCC) is a maximal subgraph
such that every vertex in the component is reachable from
every other vertex in the component. That is, for any strongly
connected component S, for all vertices qj, qk such that qj ∈ S
and qk ∈ S, qj ❀ qk and qk ❀ qj. For example, the graph
of our automated air traffic control architecture in Fig. 2
consists of one SCC since every state in that graph has a
path to every other state in the graph. An individual vertex,
not connected to itself, comprises a singular or trivial SCC.
A path ⟨qj,qj+1,qj+2, . . .qk⟩ forms a cycle if qj = qk and the
path contains at least one edge. Thus, a strongly connected
component is essentially a set of vertices such that every pair
of vertices in the set is contained in some cycle. Algorithms
for finding SCCs in symbolic graphs take advantage of the
following property:

Theorem 8. The intersection of a node’s forward and backward
sets is either empty or a strongly connected component (SCC).

Proof of Theorem 8. Let q be a vertex in directed graph G. Let
F(q) represent the forward set of q and B(q) represent the
backward set of q. First, presume q is in an SCC S. By definition
of an SCC, all nodes are reachable from, and can reach, all
other nodes in the SCC. Therefore, all of the nodes in the
SCC containing q would have to be in both q’s forward and
backward sets, or S ⊆ F(q) ∩ B(q). Furthermore, no additional
nodes not in the SCC containing q can be in the set F(q)∩ B(q).
Let q′ be a node in F(q) ∩ B(q). Then q ❀ q′ and q′ ❀ q. Since
every node q̂ ∈ S has a path to and can be reached from q,
then it must be the case that q′ and q̂ are strongly connected
by some path through q. In other words, q′ ❀ q ❀ q̂ and
q̂ ❀ q ❀ q′. Therefore, we know that F(q) ∩ B(q) ⊆ S. Together,
we have S ⊆ F(q) ∩ B(q) ∧ F(q) ∩ B(q) ⊆ S → F(q) ∩ B(q) = S. It
logically follows that the node q is not in a non-trivial SCC iff
F(q) ∩ B(q) = ∅. �

A terminal SCC is an SCC with no edges leading out to
nodes outside the SCC. Symmetrically, an initial SCC is one
with no edges leading in from nodes outside the SCC. In
Theorem 8 above, we take the intersection of node q’s forward
and backward sets because a node q in an SCC can still have
a transition to another node outside that SCC, so if the node q
is in an SCC that is not terminal, there may be many more
nodes in its forward set that are reachable from that SCC.

Symmetrically, a node q in an SCC can still have a transition
in from another node outside that SCC so if the node q is in an
SCC that is not initial, there may be many more nodes in its
backward set that can reach that SCC. All of the algorithms
for symbolic cycle detection utilize some combination of
computing forward sets (successors) while looking for initial
SCCs, backward sets (predecessors) while looking for terminal
SCCs, or some intermingling of both strategies.

Recall that the acceptance condition for a generalized
Büchi automaton requires cycling through a state in each
set in F (the set of sets of states where each acceptance
condition holds) infinitely often. Recall also that an accepting
run of a generalized Büchi automaton resembles a lasso with
a path from the start state to an accepting cycle. Thus, finding
an accepting run of a generalized Büchi automaton comes
down to finding a path to a strongly connected component
in the graph of AM,¬ϕ, GAM,¬ϕ , that contains at least one state
satisfying each acceptance condition.

Strong Fairness. In LTL model checking, we may place
these conditions on acceptance: that the counterexample
found must be just and that it must be compassionate. For
each justice requirement J in the set of justice requirements
J over AM, ¬ϕ, we define a set of J-states (states that satisfy
J). We call a subgraph just if it contains a J-state for every
justice requirement J ∈ J. Similarly, for each compassion
requirement over AM, ¬ϕ, we define a pair of sets (y, z) ∈ C
that constitute that requirement where C is the set of all
such pairs. We call a subgraph compassionate if, for every
compassion requirement (y, z) ∈ C the subgraph either
contains a z-state or else does not contain any y-state.
Combining these, we have that a subgraph is fair if it is a
non-singular strongly connected component that is both just
and compassionate, in that it intersects each accepting set
of states in both J and C. Therefore, a counterexample lasso
must be reachable from q0 and cycle infinitely often through
at least one state satisfying each acceptance condition, which
involves visiting a minimum set of states satisfying any
justice or compassion requirements we have asserted over
AM, ¬ϕ.

Theorem 9 ([154]). An infinite initialized path π is a computation
of AM,¬ϕ iff the set S of states that appear infinitely often in π

comprises a fair SCC of the graph representing AM,¬ϕ, GAM,¬ϕ .

Proof of Theorem 9.

If-direction: π is a computation of AM,¬ϕ → S is a fair SCC in
GAM,¬ϕ .

Presume AM,¬ϕ has a computation π = π0, π1, . . .. By
definition, π carves out an infinite path, starting in state
q0 that passes infinitely often through at least one state
satisfying each acceptance condition (justice or compassion
requirement) of AM,¬ϕ. Since AM,¬ϕ is finite, π takes the
shape of a lasso with a finite prefix of states starting from q0
leading to a cycle containing all of the states π visits infinitely
often. We define S to be the set of all states along that cycle.
Then, S must be fair since π is an accepting run of AM,¬ϕ.
Furthermore, S must be strongly connected since for all pairs
of states s, s′

∈ S, both s and s′ appear infinitely often in π, so
s ❀ s′ and s′ ❀ s.

Only-if direction: S is a fair SCC in GAM,¬ϕ → π is a
computation of AM,¬ϕ.
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Presume S is a fair SCC in GAM,¬ϕ . Consider some path
π, originating in q0 such that the set of states visited by π

infinitely often is defined to be S. We can construct such a
path by connecting every pair of states s, s′

∈ S such that
(s, s′) ∈ E, which is equivalent to saying δ(s, σ) = s′ for some
character σ ∈ Σ . That is, we traverse every edge between
states in S. In this way, we form the cycle such that there
are infinitely many positions j such that πj = s and πj+1 =

s′. By definition of a fair SCC, we know S intersects each
accepting set of states in GAM,¬ϕ . Therefore, by definition, π
is a computation of AM,¬ϕ. �

5.2. Symbolic methods for graph traversal

The standard algorithm for finding strongly connected
components in a directed graph is depth-first search. Indeed,
this is the algorithm used in explicit-state model checking for
finding and returning counterexamples. However, in symbolic
model checking we are not using an explicit automaton
graph; our graph is instead encapsulated succinctly using
BDDs. We have encoded the graph in terms of sets of states
and sets of transitions, altering the problem of traversing
the graph. Due to the nature of this encoding, depth-first
approaches, while optimal for examining individual states,
are not suitable for symbolic cycle detection. Rather, we
employ breadth-first, set-based cycle-detection algorithms
better suited to searching over the characteristic function, Sh,
as defined in Section 3.7.

Our goal is to locate a fair subgraph of GAM,¬ϕ because,
as we know from Theorem 9, this will allow us to
construct a counterexample, which is a computation of
AM,¬ϕ. This search is an iterative process. Essentially, we will
compute some part of the transitive closure of the transition
relation of AM,¬ϕ, i.e. R∗

◦ P or P ◦ R∗, preferably without
incurring the computational expense of computing the entire
transitive closure. To accomplish this, symbolic algorithms
take advantage of meta-strategies for dealing with the set-
based encoding of graphs such as intelligently partitioning
GAM,¬ϕ and reasoning over the SCC quotient graph of GAM,¬ϕ .
The SCC quotient graph is a directed, acyclic graph Gquotient =

(Vquotient,Equotient) such that the set of vertices Vquotient is
the set of SCCs in GAM,¬ϕ . Again, let R represent the binary
relation corresponding to the transition relation δ of AM,¬ϕ.
For two vertices V1,V2 ∈ Vquotient, there is an edge (V1,V2) ∈

Equotient iff V1 ≠ V2 (so there are no self-loops) and ∃(v1 ∈

V1,v2 ∈ V2) : (v1,v2) ∈ R. Restated, there is an edge in
Gquotient whenever there is an edge in GAM,¬ϕ from a state
in one SCC to a state in a different SCC. Note that it is easy
to prove that Gquotient is acyclic since if there were a cycle in
this graph, then all of the states in all of the SCCs on such a
cycle would be reachable from each other, which contradicts
their status as separate SCCs. Gquotient defines a partial order
over the SCCs in GAM,¬ϕ such that v1 ≤ v2 for any states
v1 ∈ V1,v2 ∈ V2 iff v1 ❀ v2. Using Gquotient, we can identify
the initial SCCs of GAM,¬ϕ as the sources of the graph and the
terminal SCCs as the sinks. It is easier to reason about sets of
predecessors and successors and partition the graph GAM,¬ϕ
to limit our search. Symbolic algorithms utilize these types of
tools to reduce the fair subgraph search problem to a smaller
set of nodes than the entire graph GAM,¬ϕ .

Whereas the time required for the depth-first exploration
of the graph of AM,¬ϕ performed in explicit-state model-
checking is directly dependent on the size of AM,¬ϕ, this is not
the case for symbolic model checking algorithms. After all,
symbolic algorithms derive their efficiency by representing
compact characteristic functions instead of large numbers of
individual states. In practice, the number of states in AM,¬ϕ
is not nearly as accurate a predictor of the time required
for symbolic model checking as the graph diameter d, the
length of the longest path in the SCC quotient graph, the
number of justice and compassion requirements, the number
of reachable SCCs (and how many of those are trivial), and
the total number and size of the set of SCCs [155]. Basically,
the number of states is frequently very large but some
shapes of AM,¬ϕ are much easier to model check than others.
This is an advantage of utilizing symbolic algorithms since
many very large graphs can be reduced to very succinct
symbolic representations. The trade-off between the size
of the representation of AM,¬ϕ and the search complexity
is necessary for practical verification. As the number of
states in AM,¬ϕ grows, considering every state individually
quickly becomes infeasible so symbolic examination of the
state space, while more difficult, is necessary to achieve
scalability. Generally, the length of the counterexample found
also depends heavily on the structure of the graph and the
size of the symbolic representation.

There are many variations of this algorithm that
have been created to provide better time-complexities,
better performance times, and shorter counterexamples.23

Optimizing fair cycle detection for symbolic model checking
remains an active area of research [156,153,157–159,155,160–
162].

There are two general classes of symbolic cycle-detection
algorithms:

• SCC-hull algorithms: Most symbolic cycle-detection algo-
rithms [24,156,144,157,148,161] sequester an SCC-hull, or a
set of states that contains all fair SCCs, without specifi-
cally enumerating the SCCs within. This set computation
is not tight; if there are fair SCCs in the graph, the SCC-
hull algorithms may return extra states besides those in
the fair SCCs.24 Basically, these algorithms maintain an
approximation set, or a conservative overapproximation of
the SCCs. The approximation set is iteratively refined by
pruning, or locating and removing states that cannot lead
to a bad cycle utilizing the property that any state on a
bad cycle must have a successor and a predecessor that
are both on the same cycle, in the same SCC, and, there-
fore, in the approximation set. In the case that there are
no fair SCCs, these algorithms return the empty set. These
algorithms locate the SCC-hull using a fixpoint algorithm
that either computes the set of all states with a path to a
fair SCC [24], from a fair SCC [156], or some combination
of both [157] since both of these sets include the states
contained in a fair SCC, if one exists. Counterexamples are

23 Note that the problem of finding the shortest counterexample
is NP-complete [152].
24 We can compile a tighter set of fair SCCs by directly computing

the exact transitive closure of the transition relation rather
than an overapproximation but this method is comparatively
inefficient for reasoning over BDDs [155].
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generated by searching for a path from the initial state q0
to a state in a fair cycle then iterating through the set of ac-
ceptance conditions using breadth-first-search to find the
shortest path to a state in the next fair set until the cycle is
completed. Depending on the specific SCC-hull algorithm,
varying amounts of additional work may be required to
isolate the fair SCC to be returned in a counterexample.

• Symbolic SCC-enumeration algorithms: Alternatively, SCC-
enumeration algorithms [153,158–160] enumerate the
SCCs of the state graph while taking advantage of the
symbolic representation to avoid explicitly manipulating
the states. Rather than extracting the (terminal or
initial) SCCs from the set of all SCCs in a hull, these
algorithms aim to compute reachability sets (either
forward or backward) for fewer nodes by isolating SCCs
sequentially. This is accomplished, for example, by
recursively partitioning GAM,¬ϕ and iteratively applying
reachability analysis to the subgraphs. The motivation is
that many systems have only a limited number of fair
SCCs so these algorithms can achieve a better worst-
case complexity than SCC-hull algorithms [160], but in
practice, their performance has been inferior [155]. Like
with SCC-hull algorithms, these algorithms utilize some
combination of forward and backward search, possibly
in an interleaved manner. Pruning helps to reduce the
number of trivial SCCs examined. After each SCC is
identified, it is checked for fairness. The algorithm
terminates as soon as the first fair SCC is located and
may end up either enumerating all SCCs or paying
additional computation cost for early elimination of unfair
SCCs in the case that no fair SCC exists. Consequently,
these algorithms tend to perform worse than SCC-hull
algorithms when there are no fair SCCs or a large number
of unfair SCCs present in AM,¬ϕ [155]. Counterexamples
are constructed similarly to, but possibly more efficiently
than, SCC-hull algorithms since it is theoretically easier to
locate a counterexample given that the enumerated fair
SCC in question is tight. The length of the counterexample
depends on which fair SCC is enumerated first, which
is determined by the starting state of the algorithm, so
optimizations include heuristics for choosing seed states
in short counterexample traces.

5.3. SCC-hull algorithm for compassionate model checking

Here we present the full algorithm for symbolic LTL model
checking, including for the sake of completeness, support for
compassion at the algorithmic level, as opposed to adding
it to the specification set or allowing only weaker forms of
fairness. All symbolic LTL model checkers support justice but
not all support compassion. For example, at the time of this
writing, NuSMV supports compassion [43] but CadenceSMV
does not [163]. Currently, compassion requirements are rarely
used in industrial practice. The algorithm discussed in this
section was first published in 1998 by Kesten, Pnueli, and
Raviv [148] and is exactly the under-the-hood implementation
in NuSMV today [43]. It is presented in a straightforward
manner using standard set theory since set operations
on the languages accepted by finite automata translate
transparently to logical operations on Boolean functions, as
we discussed in Section 4.

We call an automaton feasible if it has at least one
computation. The corollary to Theorem 9 is that AM,¬ϕ
is feasible iff GAM,¬ϕ contains a fair subgraph (a non-
singular strongly connected component that is both just and
compassionate). Therefore, we first check for the presence of
a fair subgraph and determine the feasibility of our combined
automaton. The model-checking problem reduces to M |H ϕ

iff AM,¬ϕ is not feasible. If AM,¬ϕ is not feasible, then our
verification is complete; we can conclude that M |H ϕ. If
AM,¬ϕ is feasible, we will need to construct a (preferably short)
counterexample.

Indeed, the algorithm for checking whether an automaton
is feasible is essentially a specialization of the standard itera-
tive algorithm for finding strongly connected components in
a graph. The original cycle-detection algorithms for explicit-
state model checking recursively mapped strongly connected
subgraphs, computing closures under both successors and
predecessors [56,66]. Later it was proved that the require-
ment of bi-directional closure is too strong [148]. The al-
gorithm, FEASIBLE(), presented below, requires only closure
under successor states while looking for initial components
of the graph [148].25 Proofs of soundness, completeness, and
termination of this algorithm are provided in [148,154].

Let ‖ψ‖ denote the predicate consisting of all states that
satisfy ψ, for some formula ψ, and ‖δ‖ denote the relation
consisting of all state pairs ⟨q,q′

⟩ such that δ(q, σ) = q′ for any
alphabet character σ ∈ Σ . Then we have the subroutine given
in Box IX.

The algorithm FEASIBLE() takes as input a synchronous
parallel composition of the system and specification, which
in our case is AM,¬ϕ. Recall that in this construction, ¬ϕ is
essentially serving as a tester of M, continuously monitoring
the behavior of the system and making sure the system
satisfies the desired property. Our subroutine starts by
computing the set of all successors of the initial state, q0
in the predicate new. Because any run of AM,¬ϕ will satisfy
the initial condition and obey the transition relation but not
necessarily satisfy the justice and compassion requirements,
we need to check for this characteristic additionally. We
loop through each justice and compassion requirement,
subtracting states from new that are not reachable in a finite
number of steps from states satisfying that requirement.
Then we remove from new all states that do not also have
a predecessor in new since such states cannot be part of
a strongly connected component. We repeat this process
until we reach a fixpoint; looping through every fairness
requirement, checking for predecessors, and reducing new
accordingly does not change the size of new. At this point,
if new is empty, we return the emptyset and conclude that
AM,¬ϕ is not feasible and, therefore, M |H ϕ. If new is not
empty, then it contains a fair strongly connected component
of GAM,¬ϕ from which we must extract a counterexample
witness.

To aid in our quest to efficiently find a short counterexam-
ple, if possible, we require a subroutine to find the shortest
path between two states in GAM,¬ϕ . Let λ represent the empty
list. We use the ∗-operator to denote list fusion such that if

25 An equivalent algorithm would be to check for closure under
predecessor states while looking for terminal components in the
state-transition graph.
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Box IX.

Box X.

L1 = (ℓ1, ℓ2, . . . ℓi) and L2 = (ℓi, ℓi+1, . . .) are standard list data
structures such that the last element of L1 is the same as the
first element of L2, then L1 ∗ L2 = (ℓ1, ℓ2, . . . ℓi, ℓi+1, . . .) repre-
sents their concatenation, overlapping this shared element,
or simply concatenating the lists if there is no overlap. We
define the function choose(P) to consistently choose one ele-
ment of a predicate P. Then we have the subroutine given in
Box X.

We are now ready to present the full counterexample
extraction algorithm. For completeness, we show the step
of checking AM,¬ϕ for feasibility in context. We define the
function last(L1) to return the last element in the list L1 in
the algorithm given in Box XI.

After checking AM,¬ϕ for feasibility, we exit if M |H ϕ. If
not, we know that the set returned by feasible(), which we
save in f inal, contains all of the states in fair SCCs that are
reachable from q0. We look at the set of successors of states
in the set f inal. We pick a state from this set and iterate,

replacing our chosen state s with one of its predecessors
until the set of predecessors of s is a subset of the set of
successors of s. Basically, we are attempting to move to an
initial SCC in the quotient graph of GAM,¬ϕ . Termination of
this step is guaranteed by the finite nature of GAM,¬ϕ and the
structure of the quotient graph. Next, we compute the precise
SCC containing s, restrict our attention to transitions between
states in this SCC, and utilize our shortest path algorithm to
find the prefix of our counterexample, or the path from q0 to
our fair SCC. Thenwe construct the fair cycle through our SCC
that satisfies all fairness requirements. In order to do this, we
loop through each justice requirement, adding to our cycle a
path to a state that satisfies that requirement if there is not
one in the cycle already. We do the same for each compassion
requirement. Finally, we complete the cycle with the shortest
path back to the state we started the cycle from and we are
ready to return our counterexample.
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Box XI.

5.4. Air traffic control example: model checking

In this final installment of our automated air traffic
control architecture verification example, we demonstrate
the complete model-checking process for this real-world
system from the users’ perspective. We have shown in detail
how the model checker negates the input specification, ϕ,
symbolically compiles ¬ϕ into A¬ϕ, and conjoins A¬ϕ with
the symbolic automaton system model M, forming AM,¬ϕ. If
the automaton AM,¬ϕ is not empty, then the model checker
finds a fair path that satisfies the formula ¬ϕ and returns
a counterexample, allowing the user to correct the error
in the system design. While knowledge of how each of
these steps is accomplished internally to the model checker
is beneficial, in practice the model-checking process from
the user’s perspective is simple. Familiarity with the model
checker under the hood is useful chiefly to help the user make
smarter choices when interacting with the model checker,
improving verification performance and user experience. For
example, some intelligent choices made in the process of
modeling M or utilizing counterexamples to narrow in on a
bug can help skirt the state explosion problem and make
debugging easier and more efficient.

We continue to demonstrate model checking using the
tool NuSMV. The input file AAC.smv contains one of the
NuSMV models from Section 2.2 concatenated with the
specifications from Section 3.8. As with any model checker,
we could supply our own variable order, designate which of
the model checker’s available heuristics we wish to use, or
let the model checker choose for us. Most model checkers
incorporate sufficiently optimized variable heuristics by
default so, in practice, we usually choose to let the tool
automatically find an appropriate ordering. In Box XII,
we show the output from NuSMV generated by checking

our example liveness specification that whenever a near-
term conflict is detected (i.e. whenever TSAFE_clear is false)
that the conflict is addressed (i.e. a correcting command
from TSAFE is issued), which we wrote in LTL as LTLSPEC

(G (controller_request ->(F (! controller_request)))). In
this case, the specification holds, and we can conclude that
M |H ϕ.

Now let us try another specification: we want to
ensure the human in the loop can always override the
software algorithms. In other words, we check that the
corrective trajectory requests from the controller are always
granted. Since, in our simple model, controller requests are
fulfilled by transferring the request into a corresponding
command by the auto-resolver, in LTL we write this as
�(controller_request → �(AR_command&¬controller_request)).
The result of checking that specification using NuSMV is given
in Box XIII.

Our specification has failed! The counterexample returned
guides us along a path through our system where the
specification does not hold. Notice the path starts in our
system model’s initial state, which NuSMV names State 1.1,
where all of the variables but TSAFE_clear are false. In the next
state along our path, the only variable that changes value is
controller_request, which becomes true. (This corresponds
to a transition to State 4 in the automaton in Fig. 2.) Next,
we transition to a state where controller_request is 0 and
all of the other variables’ values are the same as they were
in the last state. (We are now in State 1 in Fig. 2.) Finally,
we transition again but none of the values of the variables
change. (This represents the transition from State 1 to itself
where the airspace is clear and there are no commands or
requests.) Notice the occurrence of “– Loop starts here” just
before the description of NuSMV State 1.3 designates that
we loop from State 1 to State 1 forever, thus completing the
description of our infinite accepting run.
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Box XII.

Box XIII.

6. Discussion

While the complete algorithm presented here serves as the
basis for LTL symbolic model checking performed in industry,
in practice, extensions to this algorithm are much more
commonly used. We present the foundation upon which
more specialized and scalable variations are built. Industrial
applications frequently necessitate the use of extensions
that provide additional scalability such as compositional
verification [74], in which subunits of the system M and
the interactions between these subunits are model checked
separately, each in the manner presented here. Since the
entire automated airspace concept for air traffic control
is extremely large, the full-scale version of our running
example involves verifying components such as TSAFE and
the auto-resolver as separate subunits, then verifying their
interactions, i.e. via the high-level architecture we have
shown. Also, bounded model checking [133] depends upon
a propositional SAT solver to replace the BDD operations of

classical symbolic model checking and bounds the length of
any possible counterexample to be less than some constant
k. While this variation no longer provides the guarantee
that no counterexample of any length exists, it vastly
increases the size of systems we are able to verify, providing
better guarantees of termination in a reasonable timeframe.
Allowances for adding operators to LTL, as described in
Section 3.2.4, are also implemented through adjustments to
the algorithm for translating standard LTL.

Our running example of verifying an automated air traffic
control architecture serves both to illustrate the concepts
discussed throughout this paper and also as a stand-
alone introduction to the application of LTL symbolic model
checking to an, admittedly very simple, real-world system.
That said, several full-scale air traffic control systems in
a similar vein have been successfully verified using model
checking techniques stemming from those we discussed
here. For example, symbolic model checking in SMV was
used to verify the Traffic Alert and Collision Avoidance



C O M P U T E R S C I E N C E R E V I E W ( ) – 37

System (TCAS II), an air traffic guidance system required
on-board large commercial aircraft [164]. Properties checked
included the absence of undesirable non-determinism,
mutual exclusion, termination, absence of references to
undefined parameters, and elimination of inconsistencies in
the protocol specification. SMV also enabled verification of
the A-7E aircraft software requirements to ensure internal
aircraft modes were consistently enabled so that procedures
for monitoring, for example, the aircraft’s windspeed,
velocity, and alignment, accurately contributed to the
aircraft’s calculated relative position [165]. The Small Aircraft
Transportation System (SATS), which is an approach to air
trafficmanagement for non-towered non-radar airports in the
United States, was model checked to verify the absence of
deadlocks, that aircraft separation is maintained, and that the
system is robust in the face of unexpected rare events such
as equipment failures or aircraft deviating off-course [166].
An early specification for the TSAFE component of our air
traffic control example was also model checked to verify the
absence of synchronization faults, employing compositional
verification techniques [167].

LTL symbolic model checking is ideal for the verification
of reactive systems, or those systems that operate within
a dynamic environment such as concurrent programs,
embedded and process control programs, and operating
systems. LTL allows us to naturally and organically specify
reactive systems in terms of their ongoing behavior. By
shifting the focus of the state explosion problem from the
size of the state space (as in explicit-state model checking) to
the size of the BDD representation, symbolic model checking
can be used to verify much larger systems. Though the time
complexity bottleneck of the LTL symbolic model checking
algorithm is arguably the translation step from ϕ to A¬ϕ, there
are numerous facets of the algorithm worth optimizing, not
all of which were mentioned above. Given the promise of this
method of formal verification and the real-world verification
successes so far, optimization of virtually every segment of
this algorithm is a possible subject for future research.

Arguably the most pressing challenge in model checking
today is scalability. We must make model-checking tools
more efficient, in terms of the size of the models they can
reason about and the time and space they require, in order
to scale our verification ability to handle real-world safety-
critical systems. Currently, LTL symbolic model checking is
best used for systems whose state sets have short and easily
manipulated descriptions [168]. However, we have previously
mentioned that there are some functions with unavoidably
exponential symbolic representations.26 In the future, we
expect even more specialized variants of this algorithm to
branch out from the common framework we have presented
here in order to provide a greater array of options for
practical LTL symbolic model checking of real-world systems,
including those with characteristics we are currently unable
to accommodate.

In the coming years, we expect to see more refined
techniques for adding uncertainty in the model such
as inaccurate sensor data or models of humans in

26 See [137] for a proof that a BDD representation of a
function describing the outputs of an integer multiplier grows
exponentially regardless of the variable ordering.

the loop, abstractions for representing real-valued and
infinite-range variables, algorithms that include probabilistic
randomization, other extensions that allow probabilistic
reasoning similar to rare-event simulation, and more tools
for efficient model checking for extensions of LTL such as
the industrial logics overviewed in Section 3.2.4. Furthermore,
increasing the level of automation in the application of more
scalable techniques will be necessary in order to complete
large-scale verification efforts in reasonable time-frames. For
example, increased automation of the process of partitioning
our entire example automated air traffic control architecture
for compositional verification would significantly contribute
to the success of such a large task.
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